• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q3.4-20E

Expert-verified Found in: Page 90 ### Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069 # An object at rest on an inclined plane will not slide until the component of the gravitational force down the incline is sufficient to overcome the force due to static friction. Static friction is governed by an experimental law somewhat like that of kinetic friction (Problem 18); it has a magnitude of at most N, where m is the coefficient of static friction and N is, again, the magnitude of the normal force exerted by the surface on the object. If the plane is inclined at an angle a, determine the critical value 0 for which the object will slide if ${\mathbit{a}}{\mathbf{>}}{\mathbit{a}}$o but will not move for ${\mathbit{a}}{\mathbf{<}}{\mathbit{a}}$o.

Therefore, the object starts sliding down when ${\mathbf{tan\alpha }}_{\mathbf{o}}\mathbf{>}\mathbf{\mu }$.

See the step by step solution

## Step 1: Draw a diagram ## Step 2: Find the critical value

Here C is the center of mass of an object. As the object starting sliding down

$\left|{\mathbf{mgsin\alpha }}_{\mathbf{o}}\right|\mathbf{>}\left|\mathbf{\mu N}\right|$

However, $\left|\mathbf{\mu N}\right|\mathbf{=}\left|{\mathbf{\mu mgcos\alpha }}_{\mathbf{o}}\right|$

Hence the object starts sliding down when $\left|{\mathbf{mgsin\alpha }}_{\mathbf{o}}\right|\mathbf{>}\left|{\mathbf{\mu mgcos\alpha }}_{\mathbf{o}}\right|$

$\left|{\mathbf{sin\alpha }}_{\mathbf{o}}\right|\mathbf{>}\left|{\mathbf{\mu cos\alpha }}_{\mathbf{o}}\right|$

Assume that the inclined plain is not vertical. Hence, $\mathrm{cos}{\alpha }_{o}\ne 0$ . Then

$\left|\frac{{\mathbf{sin\alpha }}_{\mathbf{o}}}{{\mathbf{cos\alpha }}_{\mathbf{o}}}\right|\mathbf{=}\left|{\mathbf{tan\alpha }}_{\mathbf{o}}\right|$

Both $\mathbf{\mu }$and ${\mathbf{tan\alpha }}_{\mathbf{o}}$are positive,

so $\left|{\mathbf{tan\alpha }}_{\mathbf{o}}\right|\mathbf{=}{\mathbf{tan\alpha }}_{\mathbf{o}}$and $\left|\mathbf{\mu }\right|\mathbf{=}\mathbf{\mu }$

Therefore, the object starts sliding down when role="math" localid="1664209459647" ${{\mathbf{tan\alpha }}}_{{\mathbf{o}}}{\mathbf{>}}{\mathbf{\mu }}$. ### Want to see more solutions like these? 