• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8.3-30E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 444
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use the change of variables \(s = \frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\)to show that the differential equation of the aging spring \(mx'' + k{e^{ - \alpha t}}x = 0\),\(\alpha > 0\)becomes\({s^2}\frac{{{d^2}x}}{{d{s^2}}} + s\frac{{dx}}{{ds}} + {s^2}x = 0\).

Hence showed that the differential equation of the aging spring becomes \({s^2}\frac{{{d^2}x}}{{d{s^2}}} + s\frac{{dx}}{{ds}} + {s^2}x = 0\).

See the step by step solution

Step by Step Solution

Step 1:Define Bessel’s equation.

Let the Bessel equation be \({x^2}y'' + xy' + \left( {{x^2} - {n^2}} \right)y = 0\). This equation has two linearly independent solutions for a fixed value of \(n\). A Bessel equation of the first kind, indicated by \({J_n}(x)\), is one of these solutions that may be derived using Frobinous approach.

\(\begin{aligned}{y_1} = {x^a}{J_p}\left( {b{x^c}} \right)\\{y_2} = {x^a}{J_{ - p}}\left( {b{x^c}} \right)\end{aligned}\)

At \(x = 0\), this solution is regular. The second solution, which is singular at \(x = 0\), is represented by \({Y_n}(x)\) and is called a Bessel function of the second kind.

\({y_3} = {x^a}\left( {\frac{{\left( {cosp\pi } \right){J_p}\left( {b{x^c}} \right) - {J_{ - p}}\left( {b{x^c}} \right)}}{{sinp\pi }}} \right)\)

Step 2: Determine thederivatives.

Let the given function be \(mx'' + k{e^{ - \alpha t}}x = 0\) … (1), and the change of variables be \(s = \frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\).

By using the chain rule, the derivatives are,

\(\begin{aligned}\frac{{dx}}{{dt}} &= \frac{{dx}}{{ds}} \times \frac{{ds}}{{dt}}\\\frac{{{d^2}x}}{{d{t^2}}} &= \frac{d}{{dt}}\left( {\frac{{dx}}{{ds}}} \right)\frac{{ds}}{{dt}} + \frac{{dx}}{{ds}}\frac{d}{{dt}}\left( {\frac{{ds}}{{dt}}} \right)\\ &= \frac{{ds}}{{dt}}\frac{d}{{ds}}\left( {\frac{{dx}}{{ds}}} \right)\frac{{ds}}{{dt}} + \frac{{dx}}{{ds}}\left( {\frac{{{d^2}s}}{{d{t^2}}}} \right)\end{aligned}\)

\(\frac{{{d^2}x}}{{d{t^2}}} = \frac{{{d^2}x}}{{d{s^2}}}{\left( {\frac{{ds}}{{dt}}} \right)^2} + \frac{{dx}}{{ds}}\frac{{{d^2}s}}{{dt}}\) … (2)

And also,

\(\begin{aligned}\frac{{ds}}{{dt}} &= \frac{d}{{dt}}\left( {\frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)\\ &= \frac{{ - \alpha }}{2}\left( {\frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)\end{aligned}\)

\(\frac{{ds}}{{dt}} = - \sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\) … (3)

\(\begin{aligned}\frac{{{d^2}s}}{{d{t^2}}} &= \frac{d}{{dt}}\left( { - \sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)\\ &= \frac{{ - \alpha }}{2}\left( { - \sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)\end{aligned}\)

\(\frac{{{d^2}s}}{{d{t^2}}} = \frac{\alpha }{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\) … (4)

Step 3: Find the value of derivatives.

Let substitute the equation (3) and (4) into (2) that yields,

\(\frac{{{d^2}x}}{{d{t^2}}} = \frac{{{d^2}x}}{{d{s^2}}}{\left( { - \sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)^2} + \frac{{dx}}{{ds}} \times \frac{\alpha }{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\)

\(\frac{{{d^2}x}}{{d{t^2}}} = \frac{k}{m}{e^{ - \alpha t}}\frac{{{d^2}x}}{{d{s^2}}} + \frac{\alpha }{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\frac{{dx}}{{ds}}\) … (5)

Step 4: Proof for reducing the given DE.

Let substitute the equation (5) into (1) that yields,

\(\begin{aligned}m\left( {\frac{k}{m}{e^{ - \alpha t}}\frac{{{d^2}x}}{{d{s^2}}} + \frac{\alpha }{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\frac{{dx}}{{ds}}} \right) + k{e^{ - \alpha t}}x &= 0\\k{e^{ - \alpha t}}\frac{{{d^2}x}}{{d{s^2}}} + \frac{{\alpha m}}{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\frac{{dx}}{{ds}} + k{e^{ - \alpha t}}x &= 0\\\frac{4}{{{\alpha ^2}m}} \times k{e^{ - \alpha t}}\frac{{{d^2}x}}{{d{s^2}}} + \frac{4}{{{\alpha ^2}m}} \times \frac{{\alpha m}}{2}\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\frac{{dx}}{{ds}} + \frac{4}{{{\alpha ^2}m}} \times k{e^{ - \alpha t}}x &= 0\\\frac{4}{{{\alpha ^2}}} \times \frac{k}{m}{e^{ - \alpha t}}\frac{{{d^2}x}}{{d{s^2}}} + \frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}\frac{{dx}}{{ds}} + \frac{4}{{{\alpha ^2}}} \times \frac{k}{m}{e^{ - \alpha t}}x &= 0\\{\left( {\frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)^2}\frac{{{d^2}x}}{{d{s^2}}} + \left( {\frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)\frac{{dx}}{{ds}} + {\left( {\frac{2}{\alpha }\sqrt {\frac{k}{m}} {e^{ - \alpha t/2}}} \right)^2}x &= 0\\{s^2}\frac{{{d^2}x}}{{d{s^2}}} + s\frac{{dx}}{{ds}} + {s^2}x &= 0\end{aligned}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.