• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q Review Problems-8E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 344
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use the annihilator method to determine the form of a particular solution for the given equation.

(a) y''+6y'+5y=e-x+x2-1

(b) y'''+2y''-19y'-20y=xe-x

(c) y(4)+6y''+9y=x2-sin3x

(d) y'''-y''+2y=xsinx

  1. yp=C0+C1x+C2x2+C3xex
  2. yp=C4xe-x
  3. y=C0+C1x+C2x2+C3cos3x+C4sin3x+C5xcos3x+C6xsin3x+C7cos3x+C8sin3x
  4. yp=C3cosx+C4sinx+C5xcosx+C6xsinx
See the step by step solution

Step by Step Solution

Step 1: Determining the form of a particular solution for the given equation

y''+6y'+5y=e-x+x2-1e-xD+1x2-1D3D2+6D+5(D+1)D3=0(D+1)2(D+5)D3=0D=0,0,0,-5,-1,-1y=C0+C1x+C2x2+C3e-5x+C4e-x+C5xe-x

Since - 1 and - 5 are homogeneous solutions

yp=C0+C1x+C2x2+C3xex

Hence,

yp=C0+C1x+C2x2+C3xex

Step 2: Determining the form of a particular solution for the given equation

y'''+2y''-19y'-20y=xe-xe-xD+1xe-x(D+1)2D3+2D2-19D-20(D+1)2=0(D+1)D2+D-20(D+1)2=0(D-4)(D+5)(D+1)3=0D=4,-5,-1,-1y=C1e4x+C2e5x+C3e-x+C4xe-xyp=C4xe-x

Hence,

yp=C4xe-x

Step 3: Determining the form of a particular solution for the given equation

y4+6y''+9y=x2-sin3xx2D3sin3xD2+9D4+6D2+9D3D2+9=0D3D2+32D2+9=0D=0,0,0,±3i,±3i,±3iy=C0+C1x+C2x2+C3cos3x+C4sin3x+C5xcos3x+C6xsin3x+C7cos3x+C8sin3x

Hence,

y=C0+C1x+C2x2+C3cos3x+C4sin3x+C5xcos3x+C6xsin3x+C7cos3x+C8sin3x

Step 4: Determining the form of a particular solution for the given equation

y'''-y''+2y=xsinx

the corresponding differential equation

role="math" localid="1663978603548" sinxD2+1xsinxD2+12

D3-D2+2D2+12=0(D+1)D2-2D+2D2+12=0(D-1)2+1(D+1)D2+12=0D=1±i,-1,±i,±iy=C0cosx+C1sinxex+C2e-x+C3cosx+C4sinx+C5xcosx+C6xsinxyp=C3cosx+C4sinx+C5xcosx+C6xsinx

Hence,

yp=C3cosx+C4sinx+C5xcosx+C6xsinx

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.