• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

Suggested languages for you:

Americas

Europe

Q21E

Expert-verified
Found in: Page 332

### Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

# Solve the given initial value problem $\begin{array}{l}y\text{'}\text{'}\text{'}-4y\text{'}\text{'}+7y\text{'}-6y=0\\ y\left(0\right)=1\\ y\text{'}\left(0\right)=0\\ y\text{'}\text{'}\left(0\right)=0\end{array}$

The solution is $y\left(t\right)={e}^{2t}-\sqrt{2}{e}^{t}\mathrm{sin}\sqrt{2}t$

See the step by step solution

## Step 1: Basic differentiation

The Sum rule says the derivative of a sum of functions is the sum of their derivatives. The Difference rule says the derivative of a difference of functions is the difference of their derivatives.

## Step 2: Solving by basic differentiation:

We will do the following question on the basis of basic differentiation $\begin{array}{l}{r}^{3}-4{r}^{2}+7r-6=0\\ {r}^{3}-4{r}^{2}+7r-6=\left(r-2\right)\left({r}^{2}-2r+3\right)=0\\ \\ y\left(t\right)={c}_{1}{e}^{2t}+{c}_{2}{e}^{t}\mathrm{sin}\sqrt{2}t+{c}_{3}{e}^{t}\mathrm{cos}\sqrt{2}t\\ y\text{'}\left(t\right)=2{c}_{1}{e}^{2t}+{c}_{2}{e}^{t}\mathrm{sin}\sqrt{2}t+\sqrt{2}{c}_{2}{e}^{t}\mathrm{cos}\sqrt{2}t+{c}_{3}{e}^{t}\mathrm{cos}\sqrt{2}t-\sqrt{2}{c}_{3}{e}^{t}\mathrm{sin}\sqrt{2}t\\ y\text{'}\text{'}\left(t\right)=4{c}_{1}{e}^{2t}+{c}_{2}{e}^{t}\mathrm{sin}\sqrt{2}t+\sqrt{2}{c}_{2}{e}^{t}\mathrm{cos}\sqrt{2}t+\sqrt{2}{c}_{2}{e}^{t}\mathrm{cos}\sqrt{2}t-\sqrt{2}{c}_{2}{e}^{t}\mathrm{sin}\sqrt{2}t+{c}_{3}{e}^{t}\mathrm{cos}\sqrt{2}t-\sqrt{2}{c}_{3}{e}^{t}\mathrm{sin}\sqrt{2}t-\sqrt{2}{c}_{3}{e}^{t}\mathrm{sin}\sqrt{2}t-\sqrt{2}{c}_{3}{e}^{t}\mathrm{cos}\sqrt{2}t\\ \\ y\left(0\right)=1\\ y\text{'}\left(0\right)=0\\ y\text{'}\text{'}\left(0\right)=0\\ \\ y\left(t\right)={e}^{2t}-\sqrt{2}{e}^{t}\mathrm{sin}\sqrt{2}t\end{array}$

$y\left(t\right)={e}^{2t}-\sqrt{2}{e}^{t}\mathrm{sin}\sqrt{2}t$