Suggested languages for you:

Americas

Europe

Q. 2

Expert-verifiedFound in: Page 532

Book edition
Student Edition

Author(s)
Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen

Pages
227 pages

ISBN
9780395977279

**What can you say about the slope of (a) the x-axis? And (b) the y-axis?**

- The slope of $x-\text{axis}$ is 0.
- The slope o f$x-\text{axis}$ is undefined.

The given axis is** $x-\text{axis}$**.

We have to find the slope of the** $x-\text{axis}$**.

Slope formula of a line with two points $\left({x}_{1},{y}_{1}\right)\text{\hspace{0.17em}\hspace{0.17em}and\hspace{0.17em}\hspace{0.17em}}\left({x}_{2},{y}_{2}\right)$is:$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

Let us take any two points (-1, 0) and (2, 0) on the** **.

Slope of the line joining these two points, i.e., the slope of $x-\text{axis}$ is: $m=\frac{0-0}{\left(2\right)-\left(-1\right)}=0$

So, the slope of theis 0.

The given axis is** $y-\text{axis}$**.

We have to find the slope of the** $y-\text{axis}$**.

Slope formula of a line with two points $\left({x}_{1},{y}_{1}\right)\text{\hspace{0.17em}\hspace{0.17em}and\hspace{0.17em}\hspace{0.17em}}\left({x}_{2},{y}_{2}\right)\text{is}$

$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

Let us take any two points (0, 1) and (0, 3) on the** $y-\text{axis}$**.

Slope of the line joining these two points, i.e., the slope of is $y-\text{axis}$:

$m=\frac{3-1}{0-0}=\frac{2}{0}=\text{undefined}$

So, the slope of the is undefined.

94% of StudySmarter users get better grades.

Sign up for free