• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q.10

Expert-verified Found in: Page 428 ### Introductory Statistics

Book edition OER 2018
Author(s) Barbara Illowsky, Susan Dean
Pages 902 pages
ISBN 9781938168208 # Find the sum that is $1.5$ standard deviations below the mean of the sums.

The sum is $\sum X=7424.5577$.

See the step by step solution

## Step 1: Given Information

A sample size $\left(n\right)=95$.

The mean of population $\left({\mu }_{X}\right)=80$.

$z=1.5$

A standard deviation $\left({\sigma }_{X}\right)=12$.

## Step 2: Explanation

To find the sum that is $1.5$ standard deviation below the mean of the sums:

$\sum X=\left(n\right)\left({\mu }_{X}\right)-\left(z\right)\left(\sqrt{n}\right)\left({\sigma }_{X}\right)$

Calculating, we have:

$\sum X=95×80-1.5×\sqrt{95}×12$

$\sum X=7424.5577$ ### Want to see more solutions like these? 