• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q14E

Expert-verified
Linear Algebra and its Applications
Found in: Page 165
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Compute the determinants in Exercises 9-14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{6}}&{\bf{3}}&{\bf{2}}&{\bf{4}}&{\bf{0}}\\{\bf{9}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{1}}&{\bf{0}}\\{\bf{8}}&{ - {\bf{5}}}&{\bf{6}}&{\bf{7}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{4}}&{\bf{2}}&{\bf{3}}&{\bf{2}}&{\bf{0}}\end{aligned}} \right|\)

The value of the determinant is 6.

See the step by step solution

Step by Step Solution

Step 1: Expand the determinant about the fifth column

The determinant can be expanded as shown below:

\(\left| {\begin{aligned}{*{20}{c}}6&3&2&4&0\\9&0&{ - 4}&1&0\\8&{ - 5}&6&7&1\\2&0&0&0&0\\4&2&3&2&0\end{aligned}} \right| = {\left( { - 1} \right)^{3 + 5}} \cdot 1\left| {\begin{aligned}{*{20}{c}}6&3&2&4\\9&0&{ - 4}&1\\2&0&0&0\\4&2&3&2\end{aligned}} \right|\)

Step 2: Expand the determinant about the third row

The determinant can be expanded as shown below:

\(\begin{aligned}{c}{\left( { - 1} \right)^{3 + 5}} \cdot 1\left| {\begin{aligned}{*{20}{c}}6&3&2&4\\9&0&{ - 4}&1\\2&0&0&0\\4&2&3&2\end{aligned}} \right| = \left\{ {{{\left( { - 1} \right)}^{3 + 1}} \cdot 2\left| {\begin{aligned}{*{20}{c}}3&2&4\\0&{ - 4}&1\\2&3&2\end{aligned}} \right|} \right\}\\ = 2\left| {\begin{aligned}{*{20}{c}}3&2&4\\0&{ - 4}&1\\2&3&2\end{aligned}} \right|\end{aligned}\)

Step 3: Expand the determinant about the first column

The determinant can be expanded as shown below:

\(\begin{aligned}{c}2\left| {\begin{aligned}{*{20}{c}}3&2&4\\0&{ - 4}&1\\2&3&2\end{aligned}} \right| = 2\left\{ {{{\left( { - 1} \right)}^{1 + 1}} \cdot 3\left| {\begin{aligned}{*{20}{c}}{ - 4}&1\\3&2\end{aligned}} \right| + {{\left( { - 1} \right)}^{3 + 1}} \cdot 2\left| {\begin{aligned}{*{20}{c}}2&4\\{ - 4}&1\end{aligned}} \right|} \right\}\\ = 2\left\{ {3\left( { - 11} \right) + 2\left( {18} \right)} \right\}\\ = 6\end{aligned}\)

So, the value of the determinant is 6.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.