• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q16E

Expert-verified
Linear Algebra and its Applications
Found in: Page 165
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: In Exercise 16, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

16. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{3}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)

The adjugate matrix is \(\left( {\begin{array}{*{20}{c}}6&4&{14}\\0&{ - 2}&{ - 1}\\0&0&{ - 3}\end{array}} \right)\), and the inverse matrix is

See the step by step solution

Step by Step Solution

Step 1: First, find the determinant

Let \(A = \left( {\begin{array}{*{20}{c}}1&2&4\\0&{ - 3}&1\\0&0&{ - 2}\end{array}} \right)\). Then,

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&2&4\\0&{ - 3}&1\\0&0&{ - 2}\end{array}} \right|\\ = 1\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&{ - 2}\end{array}} \right| + 0 + 0\\\det A = 6 \ne 0\end{array}\)

Here, \(\det A \ne 0\). Hence the inverse of A exists.

Step 2: Compute the adjugate matrix  

The nine cofactors are:

\(\begin{array}{c}{C_{11}} = {\left( { - 1} \right)^2}\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&{ - 2}\end{array}} \right|\\ = 6\end{array}\)

\(\begin{array}{c}{C_{12}} = {\left( { - 1} \right)^3}\left| {\begin{array}{*{20}{c}}0&1\\0&{ - 2}\end{array}} \right|\\ = 0\end{array}\)

\(\begin{array}{c}{C_{13}} = {\left( { - 1} \right)^4}\left| {\begin{array}{*{20}{c}}0&{ - 3}\\0&0\end{array}} \right|\\ = 0\end{array}\)

\(\begin{array}{c}{C_{21}} = {\left( { - 1} \right)^3}\left| {\begin{array}{*{20}{c}}2&4\\0&{ - 2}\end{array}} \right|\\ = - \left( { - 4} \right)\\ = 4\end{array}\)

\(\begin{array}{c}{C_{22}} = {\left( { - 1} \right)^4}\left| {\begin{array}{*{20}{c}}1&4\\0&{ - 2}\end{array}} \right|\\ = - 2\end{array}\)

\(\begin{array}{c}{C_{23}} = {\left( { - 1} \right)^5}\left| {\begin{array}{*{20}{c}}1&2\\0&0\end{array}} \right|\\ = 0\end{array}\)

\(\begin{array}{c}{C_{31}} = {\left( { - 1} \right)^4}\left| {\begin{array}{*{20}{c}}2&4\\{ - 3}&1\end{array}} \right|\\ = 14\end{array}\)

\(\begin{array}{c}{C_{32}} = {\left( { - 1} \right)^5}\left| {\begin{array}{*{20}{c}}1&4\\0&1\end{array}} \right|\\ = - 1\end{array}\)

\(\begin{array}{c}{C_{33}} = {\left( { - 1} \right)^6}\left| {\begin{array}{*{20}{c}}1&2\\0&{ - 3}\end{array}} \right|\\ = - 3\end{array}\)

The adjugate matrix is the transpose of the matrix of cofactors. Hence,

\(\begin{array}{c}{\rm{adj}}\,A = \left( {\begin{array}{*{20}{c}}{{C_{11}}}&{{C_{21}}}&{{C_{31}}}\\{{C_{12}}}&{{C_{22}}}&{{C_{32}}}\\{{C_{13}}}&{{C_{23}}}&{{C_{33}}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}6&4&{14}\\0&{ - 2}&{ - 1}\\0&0&{ - 3}\end{array}} \right)\end{array}\)

Step 3: Use Theorem 8 to find \({A^{ - {\bf{1}}}}\)

By Theorem 8,

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.