Americas
Europe
Q27Q
Expert-verifiedIn Exercises 27 and 28, A and B are \[n \times n\] matrices. Mark each statement True or False. Justify each answer.
27. a. A row replacement operation does not affect the determinant of a matrix.
b. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by \({\left( { - {\bf{1}}} \right)^r}\), where r is the number of row interchanges made during row reduction from A to U.
c. If the columns of A are linearly dependent, then \(det\left( A \right) = 0\).
d. \(det\left( {A + B} \right) = det{\rm{ }}A + det{\rm{ }}B\).
Recall Theorem 3:
Consider a square matrix A. If any row of matrix A has a multiple that is added to another row to give a new matrix B, then the determinant of matrix A must be equal to the determinant of matrix B.
\(\det \left( A \right) = \det \left( B \right)\)
Therefore, statement (a) is true.
Recall that when A is invertible, then the determinant of matrix A can be written as shown below:
\(\det {\rm{ }}A = {\left( { - 1} \right)^r} \cdot \left( {{\rm{product of pivots in }}U} \right)\)
If it is not invertible, then the determinant of the matrix is 0.
Also, scaling a row by a constant (non-zero) during conversion to an echelon form may affect the value of the determinant.
Therefore, statement (b) is false.
The set of vectors \({{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3},...,{{\bf{b}}_n}\) is said to be linearly independent if the determinant of the matrix \(\left[ {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}& \cdots &{{{\bf{b}}_n}}\end{aligned}} \right]\) is 0 (or \(\left| {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}& \cdots &{{{\bf{b}}_n}}\end{aligned}} \right| = 0\)).
So, the columns of matrix A are linearly independent, and the determinant of the matrix is zero.
Therefore, statement (c) is true.
Check the equality \(\det \left( {A + B} \right) = \det {\rm{ }}A + \det {\rm{ }}B\).
Let the matrices be \(A = \left[ {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right]\) and \(B = \left[ {\begin{aligned}{*{20}{c}}u&v\\w&x\end{aligned}} \right]\).
Obtain the determinant of each matrix.
\(\begin{aligned}{c}\det {\rm{ }}A = \left| {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right|\\ = ad - bc\end{aligned}\)
And
\(\begin{aligned}{c}\det {\rm{ }}B = \left| {\begin{aligned}{*{20}{c}}u&v\\w&x\end{aligned}} \right|\\ = ux - vw\end{aligned}\)
Add both the determinants.
\(\begin{aligned}{c}\det {\rm{ }}A + \det {\rm{ }}B = \left( {ad - bc} \right) + \left( {ux - vw} \right)\\ = ad - bc + ux - vw\end{aligned}\)
Thus, \(\det {\rm{ }}A + \det {\rm{ }}B = ad - bc + ux - vw\).
Add both the matrices as shown below:
\(\begin{aligned}{c}A + B = \left[ {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right] + \left[ {\begin{aligned}{*{20}{c}}u&v\\w&x\end{aligned}} \right]\\ = \left[ {\begin{aligned}{*{20}{c}}{a + u}&{b + v}\\{c + w}&{d + x}\end{aligned}} \right]\end{aligned}\)
Obtain the determinant of \(A + B = \left[ {\begin{aligned}{*{20}{c}}{a + u}&{b + v}\\{c + w}&{d + x}\end{aligned}} \right]\).
\(\begin{aligned}{c}\det \left( {A + B} \right) = \left| {\begin{aligned}{*{20}{c}}{a + u}&{b + v}\\{c + w}&{d + x}\end{aligned}} \right|\\ = \left( {a + u} \right)\left( {d + x} \right) - \left( {c + w} \right)\left( {b + v} \right)\\ = ad + ax + ud + ux - cb - cv - bw - vw\end{aligned}\)
It is observed that \(\det \left( {A + B} \right) \ne \det {\rm{ }}A + \det {\rm{ }}B\).
Therefore, it is not true that \(\det \left( {A + B} \right) = \det {\rm{ }}A + \det {\rm{ }}B\).
94% of StudySmarter users get better grades.
Sign up for free