Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Linear Algebra and its Applications
Found in: Page 165
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Compute the determinant in Exercise 4 using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.

4. \(\left| {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{4}}\\{\bf{3}}&{\bf{1}}&{\bf{1}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\end{aligned}} \right|\)

Thus \(\left| {\begin{aligned}{*{20}{c}}1&2&4\\3&1&1\\2&4&2\end{aligned}} \right| = 30\).

See the step by step solution

Step by Step Solution

Step 1: Write the determinant formula

The determinant computed by a cofactor expansion across the ith row is

\(\det A = {a_{i1}}{C_{i1}} + {a_{i2}}{C_{i2}} + \cdots + {a_{in}}{C_{in}}\).

The determinant computed by a cofactor expansion down the jth column is

\(\det A = {a_{1j}}{C_{1j}} + {a_{2j}}{C_{2j}} + \cdots + {a_{nj}}{C_{nj}}\).

Here, A is an \(n \times n\) matrix, and \({C_{ij}} = {\left( { - 1} \right)^{i + j}}{A_{ij}}\).

Step 2: Use the cofactor expansion across the first row

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}1&2&4\\3&1&1\\2&4&2\end{aligned}} \right| = {a_{11}}{C_{11}} + {a_{12}}{C_{12}} + {a_{13}}{C_{13}}\\ = {a_{11}}{\left( { - 1} \right)^{1 + 1}}\det {A_{11}} + {a_{12}}{\left( { - 1} \right)^{1 + 2}}\det {A_{12}} + {a_{13}}{\left( { - 1} \right)^{1 + 3}}\det {A_{13}}\\ = 1\left| {\begin{aligned}{*{20}{c}}1&1\\4&2\end{aligned}} \right| - 2\left| {\begin{aligned}{*{20}{c}}3&1\\2&2\end{aligned}} \right| + 4\left| {\begin{aligned}{*{20}{c}}3&1\\2&4\end{aligned}} \right|\\ = 1\left( { - 2} \right) - 2\left( 4 \right) + 4\left( {10} \right)\\ = - 2 - 8 + 40\\ = 30\end{aligned}\)

Step 3: Use the cofactor expansion down the second column

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}1&2&4\\3&1&1\\2&4&2\end{aligned}} \right| = {a_{12}}{C_{12}} + {a_{22}}{C_{22}} + {a_{32}}{C_{32}}\\ = {a_{12}}{\left( { - 1} \right)^{1 + 2}}\det {A_{12}} + {a_{22}}{\left( { - 1} \right)^{2 + 2}}\det {A_{22}} + {a_{32}}{\left( { - 1} \right)^{3 + 2}}\det {A_{32}}\\ = - 2\left| {\begin{aligned}{*{20}{c}}3&1\\2&2\end{aligned}} \right| + 1\left| {\begin{aligned}{*{20}{c}}1&4\\2&2\end{aligned}} \right| - 4\left| {\begin{aligned}{*{20}{c}}1&4\\3&1\end{aligned}} \right|\\ = - 2\left( 4 \right) + 1\left( { - 6} \right) - 4\left( { - 11} \right)\\ = - 8 - 6 + 44\\ = 30\end{aligned}\)

Thus, the value of provided determinant is 30.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.