Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q6E

Expert-verified
Linear Algebra and its Applications
Found in: Page 165
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: 6. Use Cramer’s rule to compute the solution of the following system.

\(\begin{array}{c}{x_{\bf{1}}} + {\bf{3}}{x_{\bf{2}}} + \,{x_{\bf{3}}} = {\bf{4}}\\ - {x_{\bf{1}}} + \,\,\,\,\,\,\,\,\,\,{\bf{2}}{x_{\bf{3}}} = {\bf{2}}\\{\bf{3}}{x_{\bf{1}}} + \,{x_{\bf{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\, = {\bf{2}}\end{array}\)

The solution is \({x_1} = \frac{2}{5}\),\({x_2} = \frac{4}{5}\), and \({x_3} = \frac{6}{5}\).

See the step by step solution

Step by Step Solution

Step 1: Write the matrix form

The matrix form of the given system is:

\(\left( {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}4\\2\\2\end{array}} \right)\)

Thus, \(Ax = b\), where \(A = \left( {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right)\), \(b = \left( {\begin{array}{*{20}{c}}4\\2\\2\end{array}} \right)\), and \(x = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\).

Then, \({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}4&3&1\\2&0&2\\2&1&0\end{array}} \right)\),\({A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&4&1\\{ - 1}&2&2\\3&2&0\end{array}} \right)\), and \({A_3}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&3&4\\{ - 1}&0&2\\3&1&2\end{array}} \right)\).

Step 2: Find the determinants

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&3&1\\{ - 1}&0&2\\3&1&0\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&0\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}1&1\\{ - 1}&2\end{array}} \right|\\ = - 3\left( { - 6} \right) - \left( 3 \right)\\\det A = 15\end{array}\)

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}4&3&1\\2&0&2\\2&1&0\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}2&2\\2&0\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}4&1\\2&2\end{array}} \right|\\ = - 3\left( { - 4} \right) - 6\\ = 12 - 6\\\det {A_1}\left( b \right) = 6\end{array}\)

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&4&1\\{ - 1}&2&2\\3&2&0\end{array}} \right|\\ = 1\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&2\end{array}} \right| - 2\left| {\begin{array}{*{20}{c}}1&4\\3&2\end{array}} \right| + 0\\ = - 8 - 2\left( { - 10} \right)\\ = - 8 + 20\\\det {A_2}\left( b \right) = 12\end{array}\)

\(\begin{array}{c}\det {A_3}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&3&4\\{ - 1}&0&2\\3&1&2\end{array}} \right|\\ = - 3\left| {\begin{array}{*{20}{c}}{ - 1}&2\\3&2\end{array}} \right| + 0 - 1\left| {\begin{array}{*{20}{c}}1&4\\{ - 1}&2\end{array}} \right|\\ = - 3\left( { - 8} \right) - 6\\ = 24 - 6\\\det {A_3}\left( b \right) = 18\end{array}\)

Step 3: Use Cramer’s rule

By Cramer’s rule, \({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}}\), \(i = 1,2,3\). Hence,

\(\begin{array}{c}{x_1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = \frac{6}{{15}}\\{x_1} = \frac{2}{5}\end{array}\)

\(\begin{array}{c}{x_2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = \frac{{12}}{{15}}\\{x_2} = \frac{4}{5}\end{array}\)

\(\begin{array}{c}{x_3} = \frac{{\det {A_3}\left( b \right)}}{{\det A}}\\ = \frac{{18}}{{15}}\\{x_3} = \frac{6}{5}\end{array}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.