• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q19SE

Expert-verified
Linear Algebra and its Applications
Found in: Page 267
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

19. Write the companion matrix \({C_p}\) for \(p\left( t \right) = {\bf{6}} - {\bf{5}}t + {t^{\bf{2}}}\), and then find the characteristic polynomial of \({C_p}\).

The characteristic polynomial of the matrix \({C_p}\) is \(p\left( \lambda \right)\).

See the step by step solution

Step by Step Solution

Step 1: Compare the given companion matrix with the given polynomial.

Consider the polynomial \(p\left( t \right) = {a_0} + {a_1}t + ... + {a_{n - 1}}{t^{n - 1}} + {t^n}\).

The companion matrix of \(p\) is \({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1&0&{...}&0\\0&0&1&{}&0\\:&{}&{}&{}&:\\0&0&0&{}&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}&{...}&{ - {a_{n - 1}}}\end{aligned}} \right)\).

Thus, we get,

\({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1\\{ - 6}&5\end{aligned}} \right)\)

Step 2: Find the characteristic polynomial

\(\begin{aligned}{c}\det \left( {{C_p} - \lambda I} \right) &= \det \left( {\begin{aligned}{*{20}{c}}{0 - \lambda }&1\\{ - 6}&{5 - \lambda }\end{aligned}} \right)\\ &= \left( { - \lambda } \right)\left( {5 - \lambda } \right) + 6\\ &= - 5\lambda + {\lambda ^2} + 6\\ &= 6 - 5\lambda + {\lambda ^2}\\ &= p\left( \lambda \right)\end{aligned}\)

Therefore, the characteristic polynomial of the matrix \({C_p}\) is \(p\left( \lambda \right)\).

Most popular questions for Math Textbooks

Mark each statement as True or False. Justify each answer.

a. If \(A\) is invertible and 1 is an eigenvalue for \(A\), then \(1\) is also an eigenvalue of \({A^{ - 1}}\)

b. If \(A\) is row equivalent to the identity matrix \(I\), then \(A\) is diagonalizable.

c. If \(A\) contains a row or column of zeros, then 0 is an eigenvalue of \(A\)

d. Each eigenvalue of \(A\) is also an eigenvalue of \({A^2}\).

e. Each eigenvector of \(A\) is also an eigenvector of \({A^2}\)

f. Each eigenvector of an invertible matrix \(A\) is also an eigenvector of \({A^{ - 1}}\)

g. Eigenvalues must be nonzero scalars.

h. Eigenvectors must be nonzero vectors.

i. Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.

j. Similar matrices always have exactly the same eigenvalues.

k. Similar matrices always have exactly the same eigenvectors.

I. The sum of two eigenvectors of a matrix \(A\) is also an eigenvector of \(A\).

m. The eigenvalues of an upper triangular matrix \(A\) are exactly the nonzero entries on the diagonal of \(A\).

n. The matrices \(A\) and \({A^T}\) have the same eigenvalues, counting multiplicities.

o. If a \(5 \times 5\) matrix \(A\) has fewer than 5 distinct eigenvalues, then \(A\) is not diagonalizable.

p. There exists a \(2 \times 2\) matrix that has no eigenvectors in \({A^2}\)

q. If \(A\) is diagonalizable, then the columns of \(A\) are linearly independent.

r. A nonzero vector cannot correspond to two different eigenvalues of \(A\).

s. A (square) matrix \(A\) is invertible if and only if there is a coordinate system in which the transformation \({\bf{x}} \mapsto A{\bf{x}}\) is represented by a diagonal matrix.

t. If each vector \({{\bf{e}}_j}\) in the standard basis for \({A^n}\) is an eigenvector of \(A\), then \(A\) is a diagonal matrix.

u. If \(A\) is similar to a diagonalizable matrix \(B\), then \(A\) is also diagonalizable.

v. If \(A\) and \(B\) are invertible \(n \times n\) matrices, then \(AB\)is similar to \ (BA\ )

w. An \(n \times n\) matrix with \(n\) linearly independent eigenvectors is invertible.

x. If \(A\) is an \(n \times n\) diagonalizable matrix, then each vector in \({A^n}\) can be written as a linear combination of eigenvectors of \(A\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.