Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q23SE

Expert-verified
Linear Algebra and its Applications
Found in: Page 267
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix

\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)

(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.

All the columns of \(V\) are linearly independent and \(V\) is invertible. Therefore, the matrix \({C_p}\) is diagonalizable and \({V^{ - 1}}{C_p}V\) is a diagonal matrix.

See the step by step solution

Step by Step Solution

Step 1: Write the companion matrix for \(p\)

Consider the polynomial \(p\left( t \right) = {a_0} + {a_1}t + ... + {a_{n - 1}}{t^{n - 1}} + {t^n}\).

The general companion matrix is \({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right)\).

As \(p\left( t \right) = {a_0} + {a_1}t + {a_2}{t^2} + {t^3}\) and \({\lambda _1},{\lambda _2},{\lambda _3}\) are the distinct roots of the equation \(p\left( t \right) = 0\).

Consider \(V = \left( {\begin{aligned}{*{20}{c}}1&1&1\\{{\lambda _1}}&{{\lambda _2}}&{{\lambda _3}}\\{\lambda _1^2}&{\lambda _2^2}&{\lambda _3^2}\end{aligned}} \right)\).

Therefore, the companion matrix is \({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right)\).

As \(\lambda \) is a zero of \(p\left( t \right)\), then we get,

\(\begin{aligned}{c}{a_0} + {a_1}\lambda + {a_2}{\lambda ^2} + {\lambda ^3} = 0\\ - {a_0} - {a_1}\lambda - {a_2}{\lambda ^2} = {\lambda ^3}\end{aligned}\)

Step 2: Check whether \(\left( {{\bf{1}},\lambda ,{\lambda ^{\bf{2}}}} \right)\) is an eigenvector of \({C_p}\)

\(\begin{aligned}{c}{C_p} &= \left( {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}\lambda \\{{\lambda ^2}}\\{ - {a_0} - {a_1}\lambda - {a_2}{\lambda ^2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}\lambda \\{{\lambda ^2}}\\{{\lambda ^3}}\end{aligned}} \right)\\ &= \lambda \left( {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right)\end{aligned}\)

Thus, \(\left( {1,\lambda ,{\lambda ^2}} \right)\) is an eigenvector of \({C_p}\).

Since all eigenvalues \({\lambda _1},{\lambda _2},{\lambda _3}\) are distinct the eigenvectors of \({C_p}\) are linearly independent.

Thus, all the columns of \(V\) are linearly independent and \(V\) is invertible. Therefore, the matrix \({C_p}\) is diagonalizable and \({V^{ - 1}}{C_p}V\) is a diagonal matrix.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.