Americas
Europe
Q5.2-13E
Expert-verifiedQuestion: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.
13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)
The characteristic polynomial of the matrix is \( - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\).
The eigenvalue of an \(n \times n\) matrix \(A\) is a scalar \(\lambda \) such that \(\lambda \) satisfies the characteristic equation \(\det \left( {A - \lambda I} \right) = 0\).
When \(A\) is an \(n \times n\) matrix, \(\det \left( {A - \lambda I} \right)\) is the characteristic polynomial of \(A\), which is the polynomial of degree \(n\).
Use the cofactor expression down the third column to obtain the characteristic polynomial of the matrix, as shown below.
\[\begin{array}\det \left( {A - \lambda I} \right) = \det \left[ {\begin{array}{*{20}{c}}{6 - \lambda }&{ - 2}&0\\{ - 2}&{9 - \lambda }&0\\5&8&{3 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\det \left[ {\begin{array}{*{20}{c}}{6 - \lambda }&{ - 2}\\{ - 2}&{9 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\left[ {\left( {6 - \lambda } \right)\left( {9 - \lambda } \right) - \left( { - 2} \right)\left( { - 2} \right)} \right]\\ = \left( {3 - \lambda } \right)\left( {{\lambda ^2} + - 15\lambda + 50} \right)\\ = - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\\ = \left( {3 - \lambda } \right)\left( {\lambda - 5} \right)\left( {\lambda - 10} \right)\end{array}\]
Thus, the characteristic polynomial of the matrix is \( - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\).
94% of StudySmarter users get better grades.
Sign up for free