Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q5.3-12E

Expert-verified
Linear Algebra and its Applications
Found in: Page 267
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

The matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

Step 2: Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right)\). Since from the given matrix eigenvalues of the matrix are \(2\) and \(8\). Since the eigenvalues are distinct, the matrix is diagonalizable.

Step 3: Find the eigenvalues and eigenvectors

As the sum of all the eigenvalues of \(A\) is equal to the sum of the diagonal entries of \(A\), we can find the third eigenvalue:

\(\begin{array}{c}2 + 8 + x = 4 + 4 + 4\\x = 12 - 10\\x = 2\end{array}\)

So, the eigenvalues are \(2,2,8\).

Find eigenvectors.

Write the matrix form for finding the eigenvector for \(\lambda = 2\).

\(\begin{array}{c}A - 2I = 0\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&1&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}2&2&2\\2&2&2\\2&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)

Write the Row-reduced augmented matrix.

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}2&2&2&0\\2&2&2&0\\2&2&2&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&2&2&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_3} = {R_3} - {R_1}\\{R_2} = {R_2} - {R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&1&1&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\;\left\{ {{R_1} = \frac{{{R_1}}}{2}} \right\}\end{array}\)

Therefore, the parametric form of the solution is shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - {x_2} - {x_3}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - {x_2}}\\{{x_2}}\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - {x_3}}\\0\\{{x_3}}\end{array}} \right)\\ = {x_2}\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\end{array}\)

Therefore, the eigenvector for \(\lambda = 2\) are \(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\1\end{array}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\0\end{array}\\1\end{array}} \right)} \right\}\).

Write the matrix form for finding the Eigenvector for \(\lambda = 8\).

\(\begin{array}{c}A - 8I = 0\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - 8\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - \left( {\begin{array}{*{20}{c}}8&0&0\\0&8&0\\0&1&8\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 4}&2&2\\2&{ - 4}&2\\2&2&{ - 4}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)

Write the Row-reduced Augmented matrix.

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{ - 4}&2&2&0\\2&{ - 4}&2&0\\2&2&{ - 4}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\2&{ - 4}&2&0\\2&2&{ - 4}&0\end{array}} \right)\;\left\{ {{R_1} = - \frac{1}{4}{R_1}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\0&{ - 3}&3&0\\0&3&{ - 3}&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_3} = {R_3} - 2{R_1}\\{R_2} = {R_2} - 2{R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\0&{ - 3}&3&0\\0&0&0&0\end{array}} \right)\;\left\{ {{R_3} = {R_3} + {R_2}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}&0\\0&1&{ - 1}&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_2} = \frac{1}{6}{R_2}\\{R_1} = {R_1} - {R_2}\\{R_2} = - 2R2\end{array} \right\}\end{array}\)

Therefore, the parametric form of the solution is shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{{x_3}}\\{{x_3}}\\{{x_3}}\end{array}} \right)\\ = {x_3}\left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\end{array}\)

Therefore, the eigenvector for \(\lambda = 8\) are \(\left\{ {{{\rm{v}}_3}} \right\} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

The determinant is shown below:

\(\begin{array}{c}{\rm{Det}}\left( {{v_1},{v_2},{v_3}} \right) = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\\ = - 1\end{array}\)

Step 4: Find the matrix \(P\) and \(D\)

The matrix \(P\) is formed by eigenvectors

\(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\)

The matrix \(D\) is formed by eigenvalues.

\(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\)

Step 5: Find diagonalizes form of a matrix \(A\)

As the diagonal form of the matrix \(A\) is \(A = PD{P^{ - 1}}\).

Where \(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

Thus, the matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.