Americas
Europe
Q5.3-1E
Expert-verifiedQuestion: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).
1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)
The required value is \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).
The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).
Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).
\[\begin{array}{P^{ - 1}} = \frac{1}{{5 \times 3 - 7 \times 2}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{{15 - 14}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{1}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\end{array}\]
\[\begin{array}{l}D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\\{D^2} = \left( {\begin{array}{*{20}{c}}{{2^2}}&0\\0&{{1^2}}\end{array}} \right)\\{D^3} = \left( {\begin{array}{*{20}{c}}{{2^3}}&0\\0&{{1^3}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{{2^4}}&0\\0&{{1^4}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\end{array}\]
Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).
As it is given that \(A = PD{P^{ - 1}}\) than by using the formula for \({n^{th}}\) power we get:
\[{A^n} = P{D^n}{P^{ - 1}}\].
Then we get:
\[\begin{array}{A^4} = P{D^4}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{80}&7\\{32}&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\end{array}\]
Thus, \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).
94% of StudySmarter users get better grades.
Sign up for free