• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q5.3-9E

Expert-verified
Linear Algebra and its Applications
Found in: Page 267
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

The general solution is \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\). Since we cannot generate an eigenvector basis for \({\mathbb{R}^2}\), \(A\) is not diagonalizable.

See the step by step solution

Step by Step Solution

Step 1: Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

Step 2: Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\). We need to diagonalize the given matrix if possible.

Write the characteristic equation:

\[\begin{array}{c}\det \left( {A - \lambda I} \right) = \det \left( {\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right) - \lambda \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)} \right)\\ = \det \left( {\left( {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 1}\\1&{5 - \lambda }\end{array}} \right)} \right)\\ = \left( {3 - \lambda } \right)\left( {5 - \lambda } \right) - \left( { - 1} \right)\left( 1 \right)\\ = {\lambda ^2} - 8\lambda + 16\\ = {\left( {\lambda - 4} \right)^2}\end{array}\]

Therefore, \(\det \left( {A - \lambda I} \right) = {\left( {\lambda - 4} \right)^2}\).

Step 3: Find the eigenvalues

\[\begin{array}{c}\det \left( {A - \lambda I} \right) = 0\\{\left( {\lambda - 4} \right)^2} = 0\\\lambda = 4,4\end{array}\]

So, the eigenvalue of the matrix is \(4\) with a multiplicity of \(2\).

Step 4: Find the eigenvectors

\[\begin{array}{c}\left( {A - \lambda I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 1}\\1&{5 - \lambda }\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{3 - 4}&1\\1&{5 - 4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\end{array}\]

Therefore, the eigenvectors are shown below:

\[ - {x_1} - {x_2} = 0\]

\[\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = k\left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\]

So, eigenvector is \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\).

Since we cannot generate an eigenvector basis for \({\mathbb{R}^2}\), \(A\) is not diagonalizable.

Thus, the matrix is not-Diagonalizable.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.