• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

### Select your language

Suggested languages for you:

Americas

Europe

Q7.6-28E

Expert-verified
Found in: Page 267

### Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

# Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system $\stackrel{\mathbf{\to }}{\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{+}}{\mathbf{1}}{\mathbf{\right)}}{\mathbf{=}}{\mathbf{A}}\stackrel{\mathbf{\to }}{\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}$ What can you say about the stability of the systems $\stackrel{\mathbf{\to }}{\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{+}}{\mathbf{1}}{\mathbf{\right)}}{\mathbf{=}}\left(A-2{I}_{n}\right)\stackrel{\mathbf{\to }}{\mathbf{x}}{\mathbf{\left(}}{\mathbf{t}}{\mathbf{\right)}}$

The given value is unstable

See the step by step solution

## define eigenvalue

Eigenvalues can be used to determine whether a fixed point (also known as an equilibrium point) is stable or unstable.