Americas
Europe
Q14E
Expert-verifiedFind the general solutions of the systems whose augmented matrices are given as
14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).
The general solution of the system is
\({x_1} = - 5 + 2{x_2} + 5{x_3} + 6{x_4}\)
\({x_2} = 2 + 6{x_3} + 3{x_4}\)
\({x_3}\) is free.
\({x_4}\)is free.
\({x_5} = 0\).
To obtain the general solution of the system, you have to convert the augmented matrix into the system of equations.
Write the given matrix into the equation notation.
\(\begin{aligned}{c}{x_1} - 2{x_2} - 5{x_3} - 6{x_4} = - 5\\{x_2} - 6{x_3} - 3{x_4} = 2\\{x_5} = 0\end{aligned}\)
The variables corresponding to the pivot columns in the matrix are called basic variables.
The other variables are called free variables.
The basic variables of the given matrix are \({x_1},{x_2},{x_5}\). The free variables are \({x_3},{x_4}\).
Thus, the general solution of the system is
\(\begin{aligned}{c}{x_1} = - 5 + 2{x_2} + 5{x_3} + 6{x_4}\\{x_2} = 2 + 6{x_3} + 3{x_4}\end{aligned}\)
\({x_3}\) is a free variable.
\({x_4}\) is a free variable.
\({x_5} = 0\).
94% of StudySmarter users get better grades.
Sign up for free