Americas
Europe
Q14E
Expert-verifiedIn Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).
14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)
\({\mathop{\rm b}\nolimits} \) is a linear combination \({{\mathop{\rm a}\nolimits} _1},{{\mathop{\rm a}\nolimits} _2}\), and \({{\mathop{\rm a}\nolimits} _3}\).
In \({\mathbb{R}^2}\), the sum of two vectors \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) is the vector addition \({\mathop{\rm u}\nolimits} + v\), which is obtained by adding the corresponding entries of \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \).
The scalar multiple of a vector \({\mathop{\rm u}\nolimits} \) by real number \(c\) is the vector \(c{\mathop{\rm u}\nolimits} \) obtained by multiplying each entry in \({\mathop{\rm u}\nolimits} \) by \(c\).
Use scalar multiplication and vector addition to rewrite the matrix as a vector equation by
\(\left[ {\begin{array}{*{20}{c}}{{x_1} - 2{x_2} - 6{x_3}}\\{3{x_2} + 7{x_3}}\\{{x_1} - 2{x_2} + 5{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)
The vectors on the left and right sides are equal if and only if their corresponding entries are both equal. Thus, \({x_1}\) and \({x_2}\) make the vector equation \({x_1}{a_1} + {x_2}{a_2} = b\) if and only if \({x_1}\) and \({x_2}\) satisfy the system.
Write the matrix into a vector equation.
\(\begin{aligned}{c}{x_1} - 2{x_2} - 6{x_3} &= 11\\3{x_2} + 7{x_3} &= - 5\\{x_1} - 2{x_2} + 5{x_3} &= 9\end{aligned}\)
A vector equation \({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + ... + {x_n}{a_n} = b\) has the same solution set as the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{...}&{{a_n}}&b\end{array}} \right]\).
Thus, the augmented matrix for the vector equations \({x_1} - 2{x_2} - 6{x_3} = 11,\,3{x_2} + 7{x_3} = - 5\) and \({x_1} - 2{x_2} + 5{x_3} = 9\) is represented as:
\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}&{11}\\0&3&7&{ - 5}\\1&{ - 2}&5&9\end{array}} \right]\)
Perform an elementary row operation to produce the first augmented matrix.
Replace row 3 by adding -1 times row 1 to row 3.
\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}&{11}\\0&3&7&{ - 5}\\0&0&{11}&{ - 2}\end{array}} \right]\)
Perform an elementary row operation to produce a second augmented matrix.
Multiply row 2 by \(\frac{1}{3}\).
\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}&{11}\\0&1&{\frac{7}{3}}&{ - \frac{5}{3}}\\0&0&{11}&{ - 2}\end{array}} \right]\)
Perform an elementary row operation to produce a third augmented matrix.
Multiply row 3 by \(\frac{1}{{11}}\).
\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}&{11}\\0&1&{\frac{7}{3}}&{ - \frac{5}{3}}\\0&0&1&{\frac{{ - 2}}{{11}}}\end{array}} \right]\)
As it is known that the vector \({\mathop{\rm y}\nolimits} \) defined by \(y = {c_1}{v_1} + .... + {c_p}{v_p}\) is called a linear combination of \({{\mathop{\rm v}\nolimits} _1},{v_2},...,{v_p}\) with weights \({c_1},{c_2},...,{c_p}\).
To obtain the solution of the vector equations, you have to convert the augmented matrix into vector equations.
Write the obtained matrix \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}&{11}\\0&1&{\frac{7}{3}}&{ - \frac{5}{3}}\\0&0&1&{\frac{{ - 2}}{{11}}}\end{array}} \right]\) into the equation notation.
\(\begin{aligned}{c}{x_1} - 2{x_2} - 6{x_3} &= 11\\{x_2} + \frac{7}{3}{x_3} &= - \frac{{ - 5}}{3}\\{x_3} &= \frac{{ - 2}}{{11}}\end{aligned}\)
So, if \({{\mathop{\rm a}\nolimits} _1},{a_2}\), and \({{\mathop{\rm a}\nolimits} _3}\) are the three columns of \(A\), the system of equations corresponding to the vector equation \({x_1}{{\mathop{\rm a}\nolimits} _1} + {x_2}{{\mathop{\rm a}\nolimits} _2} + {x_3}{{\mathop{\rm a}\nolimits} _3} = {\mathop{\rm b}\nolimits} \) is consistent.
Hence, \({\mathop{\rm b}\nolimits} \) is a linear combination \({{\mathop{\rm a}\nolimits} _1},{{\mathop{\rm a}\nolimits} _2}\), and \({{\mathop{\rm a}\nolimits} _3}\).
94% of StudySmarter users get better grades.
Sign up for free