Americas
Europe
Q22E
Expert-verifiedConstruct a \(3 \times 3\) matrix\(A\), with nonzero entries, and a vector \(b\) in \({\mathbb{R}^3}\) such that \(b\) is not in the set spanned by the columns of\(A\).
\(A = \left[ {\begin{array}{*{20}{c}}1&1&1\\{ - 1}&1&1\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\)
The idea is to consider a matrix \(A\) with nonzero entries such that the system is inconsistent.
Take \(A = \left[ {\begin{array}{*{20}{c}}1&1&1\\{ - 1}&1&1\\{ - 1}&{ - 1}&{ - 1}\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\).
To prove \(b\) is not in the set spanned by the columns of\(A\), show \(x\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\\{ - 1}\end{array}} \right] + y\left[ {\begin{array}{*{20}{c}}1\\1\\{ - 1}\end{array}} \right] + z\left[ {\begin{array}{*{20}{c}}1\\1\\{ - 1}\end{array}} \right] = b\) has no solution.
This linear combination can be written as:
\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}x\\{ - x}\\{ - x}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}y\\y\\{ - y}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}z\\z\\{ - z}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{x + y + z}\\{ - x + y + z}\\{ - x - y - z}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}1\\2\\3\end{array}} \right]\end{aligned}\)
This implies that the system is:
\(\begin{array}{c}x + y + z = 1\\ - x + y + z = 2\\ - x - y - z = 3\end{array}\)
The row echelon form of the augmented matrix of this system is given as follows:
Apply row operations \({R_2} \to {R_2} + {R_1}\) and \({R_3} \to {R_3} + {R_1}\).
\(\left[ {\begin{array}{*{20}{c}}1&1&1&1\\{ - 1}&1&1&2\\{ - 1}&{ - 1}&{ - 1}&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&1&1&1\\0&2&2&3\\0&0&0&4\end{array}} \right]\,\)
The equivalent system of equations using the echelon form is:
\(\begin{aligned}{c}x + y + z &= 1\\2y + 2z &= 3\\0 &= 4\end{aligned}\)
The last equation is not possible.
Therefore, the system is inconsistent.
Hence, the system has no solution. This ensures that \(b\) is not in the set spanned by the columns of\(A\).
94% of StudySmarter users get better grades.
Sign up for free