Americas
Europe
Q2E
Expert-verifiedIn Exercise 2, compute \(u + v\) and \(u - 2v\).
2. \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).
The vectors are \(u + v = \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\) and \(u - 2v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\).
From the given vectors, it is observed that both vectors contain two entries. So, the vectors can be denoted as \({\mathbb{R}^2}\).
Add the corresponding terms of \(u\) and \(v\) to compute \(u + v\).
Obtain vector \(u + v\) by using vectors \(u = \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right]\), and \(v = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\).
\(\begin{aligned}{c}u + v &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 + \left( 2 \right)}\\{2 + \left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 + 2}\\{2 - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\end{aligned}\)
Thus, the vector is \(u + v = \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\).
Multiply each entry of a \({\mathbb{R}^2}\) vector by a scalar number to obtain the scalar multiple of a vector by a constant.
Vector \(u - 2v\) can be written as \(u + \left( { - 2} \right)v\).
Obtain the scalar multiple of vector \(v\) by scalar \(\left( { - 2} \right)\), and then add the resultant vector with vector \(u\).
\(\begin{aligned}{c}u + \left( { - 2} \right)v &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left( { - 2} \right)\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{\left( { - 2} \right)\left( 2 \right)}\\{\left( { - 2} \right)\left( { - 1} \right)}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}3\\2\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 4}\\2\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{3 - 4}\\{2 + 2}\end{array}} \right]\end{aligned}\)
Solve further to get:
\(u + \left( { - 2} \right)v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\)
Thus, \(u - 2v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\).
Therefore, \(u + v = \left[ {\begin{array}{*{20}{c}}5\\1\end{array}} \right]\), and \(u - 2v = \left[ {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right]\).
94% of StudySmarter users get better grades.
Sign up for free