Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q33Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 1
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 33 and 34, T is a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

The formula for \({T^{ - 1}}\) is \({T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Determine the standard matrix T

Write the transformation \(T\left( x \right)\) and \(x\) in the column vector of \(A\).

\(\begin{aligned}{c}T\left( x \right) = \left( {\begin{aligned}{*{20}{c}}{ - 5{x_1} + 9{x_2}}\\{4{x_1} - 7{x_3}}\end{aligned}} \right)\\ = \left( A \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\end{aligned}\)

Thus, the standard matrix of T is \(A = \left( {\begin{aligned}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{aligned}} \right)\).

Step 2: Show that T  is invertible

Theorem 4 states that \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\). If \(ad - bc \ne 0\), then A is invertible.

\({A^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\)

If \(ad - bc = 0\), then A is not invertible.

The linear transformation T is invertible since the determinant of the matrix is non-zero.

Step 3: Determine the formula for \({T^{ - 1}}\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and A be the standard matrix for T. Then, according to Theorem 9, T is invertible if and only if A is an invertible matrix. The linear transformation S, given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\).

According to theorem 9, transformation T is invertible and the standard matrix of \({T^{ - 1}}\) is \({A^{ - 1}}\).

Use the formula for \(2 \times 2\) inverse.

\(\begin{aligned}{c}{A^{ - 1}} = \frac{1}{{35 - 36}}\left( {\begin{aligned}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{aligned}} \right)\\ = \frac{1}{{ - 1}}\left( {\begin{aligned}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}7&9\\4&5\end{aligned}} \right)\end{aligned}\)

Therefore,

\(\begin{aligned}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \left( {\begin{aligned}{*{20}{c}}7&9\\4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\\ = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\end{aligned}\)

Thus, the formula for \({T^{ - 1}}\) is \({T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.