Americas
Europe
Q34Q
Expert-verifiedIn Exercises 33 and 34, T is a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).
34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)
The formula for \({T^{ - 1}}\) is \({T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\).
Write the transformation \(T\left( x \right)\) and \(x\) in the column vector of \(A\).
\(\begin{aligned}{c}T\left( x \right) = \left( {\begin{aligned}{*{20}{c}}{6{x_1} - 8{x_2}}\\{ - 5{x_1} + 7{x_3}}\end{aligned}} \right)\\ = \left( A \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}6&{ - 8}\\{ - 5}&7\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\end{aligned}\)
Thus, the standard matrix of T is \(A = \left( {\begin{aligned}{*{20}{c}}6&{ - 8}\\{ - 5}&7\end{aligned}} \right)\).
Theorem 4 states that \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\). If \(ad - bc \ne 0\), then A is invertible.
\({A^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\)
If \(ad - bc = 0\), then A is not invertible.
The linear transformation T is invertible since det\(A = 2 \ne 0\).
Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and A be the standard matrix for T. Then, according to Theorem 9, T is invertible if and only if A is an invertible matrix. The linear transformation S, given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is a unique function satisfying the equations
According to theorem 9, transformation T is invertible and \({T^{ - 1}}\left( x \right) = Bx\), where\(B = {A^{ - 1}}\).
Use the formula for \(2 \times 2\) inverse.
\(\begin{aligned}{c}{A^{ - 1}} = \frac{1}{{42 - 40}}\left( {\begin{aligned}{*{20}{c}}7&8\\5&6\end{aligned}} \right)\\ = \frac{1}{2}\left( {\begin{aligned}{*{20}{c}}7&8\\5&6\end{aligned}} \right)\end{aligned}\)
Therefore,
\(\begin{aligned}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \frac{1}{2}\left( {\begin{aligned}{*{20}{c}}7&8\\5&6\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\\ = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\end{aligned}\)
Thus, the formula for \({T^{ - 1}}\) is \({T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\).
94% of StudySmarter users get better grades.
Sign up for free