Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q39Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 1
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let S and U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that T has a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

It is proved that \(U\left( v \right) = S\left( v \right)\).

See the step by step solution

Step by Step Solution

Step 1: Show that T is onto mapping

For any v in \({\mathbb{R}^n}\), you can write \({\mathop{\rm v}\nolimits} = T\left( x \right)\) for some x (since \(T\) is onto mapping).

Step 2: Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\)

According to the assumed properties of S and U, \(S\left( v \right) = S\left( {T\left( x \right)} \right) = x\) and \(U\left( v \right) = U\left( {T\left( x \right)} \right) = x\). Therefore, \(S\left( v \right)\) and \(U\left( v \right)\) are equal for any v.

This means that S and U are the same functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\).

Thus, it is proved that \(U\left( v \right) = S\left( v \right)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.