Americas
Europe
Q6Q
Expert-verifiedConsider the problem of determining whether the following system of equations is consistent:
\(\begin{aligned}{c}{\bf{4}}{x_1} - {\bf{2}}{x_2} + {\bf{7}}{x_3} = - {\bf{5}}\\{\bf{8}}{x_1} - {\bf{3}}{x_2} + {\bf{10}}{x_3} = - {\bf{3}}\end{aligned}\)
a. Vector b is in the span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).
b. Vector b is in linear combinations of the columns of matrix A.
c. Vector b is in the range of T.
The system of equations \(4{x_1} - 2{x_2} + 7{x_3} = - 5\) and \(8{x_1} - 3{x_2} + 10{x_3} = - 3\) can be represented in the matrix equation form \(A{\bf{x}} = {\bf{b}}\) as follows:
\(\left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7\\8&{ - 3}&{10}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\{ - 3}\end{aligned}} \right)\)
Assume that the column vectors are \({{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}4\\8\end{aligned}} \right)\), \({{\bf{v}}_2} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\{ - 3}\end{aligned}} \right)\), \({{\bf{v}}_3} = \left( {\begin{aligned}{*{20}{c}}7\\{10}\end{aligned}} \right)\), and \({\bf{b}} = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\{ - 3}\end{aligned}} \right)\).
Convert the system of equations \(4{x_1} - 2{x_2} + 7{x_3} = - 5\) and \(8{x_1} - 3{x_2} + 10{x_3} = - 3\) into the augmented matrix as shown below:
\(\left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7&{ - 5}\\8&{ - 3}&{10}&{ - 3}\end{aligned}} \right)\)
Use the \(4{x_1}\) term in the first equation to eliminate the \(8{x_1}\) term from the second equation. Add \( - 2\) times row one to row two.
\(\left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7&{ - 5}\\0&1&{ - 4}&7\end{aligned}} \right)\)
In the above augmented matrix, there are no free variables. It means the system of equations is consistent.
Thus, b is in the span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).
The system of equations \(4{x_1} - 2{x_2} + 7{x_3} = - 5\) and \(8{x_1} - 3{x_2} + 10{x_3} = - 3\) or the augmented matrix \(\left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7&{ - 5}\\8&{ - 3}&{10}&{ - 3}\end{aligned}} \right)\) in the vector form is shown below:
\({x_1}\left( {\begin{aligned}{*{20}{c}}4\\8\end{aligned}} \right) + {x_2}\left( {\begin{aligned}{*{20}{c}}{ - 2}\\{ - 3}\end{aligned}} \right) + {x_3}\left( {\begin{aligned}{*{20}{c}}7\\{10}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\{ - 3}\end{aligned}} \right)\)
From the above row-reduced echelon form,
\(\left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7&{ - 5}\\0&1&{ - 4}&7\end{aligned}} \right)\).
The system of equations is consistent.
Thus, b is in linear combinations of the columns of matrix A.
Consider the transformation \(T\left( {\bf{x}} \right) = A{\bf{x}}\).
It can also be written as shown below:
\(T\left( {\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)} \right) = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7\\8&{ - 3}&{10}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)\)
Let the solution be \({\bf{x}} = \left( {\begin{aligned}{*{20}{c}}{9/4}\\7\\0\end{aligned}} \right)\).
Then, the transformation becomes:
\(\begin{aligned}{c}T\left( {\left( {\begin{aligned}{*{20}{c}}{9/4}\\7\\0\end{aligned}} \right)} \right) = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7\\8&{ - 3}&{10}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{9/4}\\7\\0\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4\left( {9/4} \right) - 14 + 0}\\{8\left( {9/4} \right) - 21 + 0}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\{ - 3}\end{aligned}} \right)\\ = {\bf{b}}.\end{aligned}\)
So, \(T\left( {\bf{x}} \right) = {\bf{b}}\).
Thus, vector b is in the range of T.
94% of StudySmarter users get better grades.
Sign up for free