• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 93
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let A be an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If A is larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

The solution \(\begin{aligned}{*{20}{c}}{{{\mathop{\rm u}\nolimits} _1}}&{...}&{{{\mathop{\rm u}\nolimits} _p}}\end{aligned}\) can be uniquely determined since A is an invertible matrix, and \(\left( {\begin{aligned}{*{20}{c}}A&{{b_1}}&{...}&{{b_p}}\end{aligned}} \right)\) must row reduced to \(\left( {\begin{aligned}{*{20}{c}}I&{{{\mathop{\rm u}\nolimits} _1}}&{...}&{{{\mathop{\rm u}\nolimits} _p}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: The equation \(AX = B\) is equivalent to the p systems

It is known that \(A\) is a \(m \times n\) matrix. If B is a \(n \times p\) matrix with columns \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _p}\), the product AB is the \(m \times p\) matrix whose columns are \(A{{\mathop{\rm b}\nolimits} _1},...,A{{\mathop{\rm b}\nolimits} _p}\). That is, \(AB = A\left( {\begin{aligned}{*{20}{c}}{{b_1}}&{{b_2}}&{{b_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{A{b_1}}&{A{b_2}}&{A{b_3}}\end{aligned}} \right)\) .

Write the matrix \(B = \left( {\begin{aligned}{*{20}{c}}{{b_1}}&{...}&{{b_p}}\end{aligned}} \right)\) and \(X = \left( {\begin{aligned}{*{20}{c}}{{{\mathop{\rm u}\nolimits} _1}}&{...}&{{{\mathop{\rm u}\nolimits} _p}}\end{aligned}} \right)\). \(AX = \left( {\begin{aligned}{*{20}{c}}{A{{\mathop{\rm u}\nolimits} _1}}&{...}&{A{{\mathop{\rm u}\nolimits} _p}}\end{aligned}} \right)\) according to the matrix multiplication. Therefore, the equation \(AX = B\) is equivalent to the p system.

\(A{{\mathop{\rm u}\nolimits} _1} = {{\mathop{\rm b}\nolimits} _1},...,A{{\mathop{\rm u}\nolimits} _p} = {{\mathop{\rm b}\nolimits} _p}\)

Since A is the coefficient matrix in each system, these systems can be solved simultaneously by placing the augmented columns of each system next to A such that \(\left( {\begin{aligned}{*{20}{c}}A&{{b_1}}&{...}&{{b_p}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\).

Step 2: The row reduced matrix of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\)

If A is an invertible \(n \times n\) matrix, for each b in \({\mathbb{R}^n}\), the equation \(Ax = b\) has the unique solution \(x = {A^{ - 1}}b\).

The solution \(\begin{aligned}{*{20}{c}}{{{\mathop{\rm u}\nolimits} _1}}&{...}&{{{\mathop{\rm u}\nolimits} _p}}\end{aligned}\) can be uniquely determined since A is an invertible matrix, and \(\left( {\begin{aligned}{*{20}{c}}A&{{b_1}}&{...}&{{b_p}}\end{aligned}} \right)\)must row reduced to \(\left( {\begin{aligned}{*{20}{c}}I&{{{\mathop{\rm u}\nolimits} _1}}&{...}&{{{\mathop{\rm u}\nolimits} _p}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\). Thus, \(X\) is a unique solution \({A^{ - 1}}B\) of the equation \(AX = B\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.