• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q2.3-33Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 93
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 33 and 34, T is a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

The formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\].

See the step by step solution

Step by Step Solution

Step 1: Determine the standard matrix T

Write the transformation \(T\left( x \right)\) and \(x\) in the column vector of \(A\).

\[\begin{array}{c}T\left( x \right) = \left[ {\begin{array}{*{20}{c}}{ - 5{x_1} + 9{x_2}}\\{4{x_1} - 7{x_3}}\end{array}} \right]\\ = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\end{array}\]

Thus, the standard matrix of T is \(A = \left[ {\begin{array}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{array}} \right]\).

Step 2: Show that T  is invertible

Theorem 4 states that \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\). If \(ad - bc \ne 0\), then A is invertible.

\({A^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\)

If \(ad - bc = 0\), then A is not invertible.

The linear transformation T is invertible since the determinant of the matrix is non-zero.

Step 3: Determine the formula for \({T^{ - 1}}\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and A be the standard matrix for T. Then, according to Theorem 9, T is invertible if and only if A is an invertible matrix. The linear transformation S, given by \[S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \], is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\).

According to theorem 9, transformation T is invertible and the standard matrix of \({T^{ - 1}}\) is \({A^{ - 1}}\).

Use the formula for \(2 \times 2\) inverse.

\(\begin{array}{c}{A^{ - 1}} = \frac{1}{{35 - 36}}\left[ {\begin{array}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{array}} \right]\\ = \frac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&9\\4&5\end{array}} \right]\end{array}\)

Therefore,

\[\begin{array}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \left[ {\begin{array}{*{20}{c}}7&9\\4&5\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\end{array}\]

Thus, the formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\].

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.