Americas
Europe
Q2.4-3Q
Expert-verifiedIn Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.
3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]
The product is \[\left[ {\begin{array}{*{20}{c}}Y&Z\\W&X\end{array}} \right]\].
If the sum of the products of matching entries from row \(i\) of matrix A and column \(j\) of matrix B equals the item in row \(i\) and column \(j\) of AB, then it can be said that product AB is defined.
The product is shown below:
\({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\)
Compute the product by using the row-column rule, as shown below:
\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}0&I\\I&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{0\left( W \right) + I\left( Y \right)}&{0\left( X \right) + I\left( Z \right)}\\{I\left( W \right) + 0\left( Y \right)}&{I\left( X \right) + 0\left( Z \right)}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{IY}&{IZ}\\{IW}&{IX}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}Y&Z\\W&X\end{array}} \right]\end{array}\)
Thus, \[\left[ {\begin{array}{*{20}{c}}0&I\\I&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}Y&Z\\W&X\end{array}} \right]\].
94% of StudySmarter users get better grades.
Sign up for free