Americas
Europe
Q2.4-7Q
Expert-verifiedIn Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Z in terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint: Compute the product on the left, and set it equal to the right side.]
7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]
The formulas are \(X = {A^{ - 1}}\), \(Y = - B{A^{ - 1}}\), and \[Z = 0\].
If the sum of the products of matching entries from row \(i\) of matrix A and column \(j\) of matrix B equals the item in row \(i\) and column \(j\) of AB, then it can be said that product AB is defined.
The product is shown below:
\({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\)
Compute the product of the left part of the given equation by using the row-column rule, as shown below:
\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}X&0&0\\Y&0&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\0&0\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{X\left( A \right) + 0\left( 0 \right) + 0\left( B \right)}&{X\left( Z \right) + 0\left( 0 \right) + 0\left( I \right)}\\{Y\left( A \right) + 0\left( 0 \right) + I\left( B \right)}&{Y\left( Z \right) + 0\left( 0 \right) + I\left( I \right)}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{XA + 0 + 0 \cdot B}&{XZ + 0 + 0 \cdot I}\\{YA + 0 + I \cdot B}&{YZ + 0 + {I^2}}\end{array}} \right]\end{array}\]
Use the matrix properties \(A \cdot I = A\), \(A \cdot 0 = 0\), and \({I^2} = I\).
\[\left[ {\begin{array}{*{20}{c}}X&0&0\\Y&0&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\0&0\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{XA}&{XZ}\\{YA + B}&{YZ + I}\end{array}} \right]\]
Thus, \[\left[ {\begin{array}{*{20}{c}}X&0&0\\Y&0&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\0&0\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{XA}&{XZ}\\{YA + B}&{YZ + I}\end{array}} \right]\].
Equate both the matrices as shown below:
\[\left[ {\begin{array}{*{20}{c}}{XA}&{XZ}\\{YA + B}&{YZ + I}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0\\0&I\end{array}} \right]\]
By comparing, the formulas become
\(\begin{array}{c}XA = I\\X\left( {{A^{ - 1}}A} \right) = {A^{ - 1}}\left( I \right)\\X \cdot I = {A^{ - 1}} \cdot I\\X = {A^{ - 1}}\end{array}\)
\[\begin{array}{c}XZ = 0\\{X^{ - 1}}\left( {XZ} \right) = {X^{ - 1}}\left( 0 \right)\\Z = 0\end{array}\]
and
\(\begin{array}{c}YA + B = 0\\YA = 0 - B\\YA = - B\end{array}\)
Solve further to get
\(\begin{array}{c}\left( {YA} \right){A^{ - 1}} = \left( { - B} \right){A^{ - 1}}\\Y \cdot \left( {A{A^{ - 1}}} \right) = - B{A^{ - 1}}\\Y \cdot I = - B{A^{ - 1}}\\Y = - B{A^{ - 1}}.\end{array}\)
Therefore, the formulas are \(X = {A^{ - 1}}\), \(Y = - B{A^{ - 1}}\), and \[Z = 0\].
94% of StudySmarter users get better grades.
Sign up for free