• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q27Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 93
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

\({{\mathop{\rm u}\nolimits} ^T}v = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = - 2a + 3b - 4c\), \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\), and \(v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Determine the product \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \)

It is known that the transpose of A is denoted by \({A^T}\).

The matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, commonly represented by a real number and written without the matrix brackets.

\(\begin{aligned}{c}{{\mathop{\rm u}\nolimits} ^T}v = \left( {\begin{aligned}{*{20}{c}}{ - 2}&3&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\\ = - 2a + 3b - 4c\\{{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a&b&c\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\\ = - 2a + 3b - 4c\end{aligned}\)

Step 2: Determine the product \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\)

\(\begin{aligned}{c}{{\mathop{\rm uv}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}a&b&c\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\\v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}&3&{ - 4}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\end{aligned}\)

Thus, the products is \({{\mathop{\rm u}\nolimits} ^T}v = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = - 2a + 3b - 4c\), \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\), and \(v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.