Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q28Q

Expert-verified
Linear Algebra and its Applications
Found in: Page 93
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

The relation of inner and outer product is \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) and \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\), respectively.

See the step by step solution

Step by Step Solution

Step 1: Determine the relation of the inner product

Theorem 3 states that \(A\) and \(B\) denotes matrices whose sizes are appropriate for the following sums and products.

  1. \({\left( {{A^T}} \right)^{^T}} = A\).
  2. \({\left( {A + B} \right)^T} = {A^T} + {B^T}\).
  3. For any scalar \(r\), \({\left( {rA} \right)^T} = r{A^T}\).
  4. \({\left( {AB} \right)^T} = {B^T}{A^T}\).

The inner product \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) is a real number since it equals its transpose.

Use theorem 3 to obtain the relation of the inner product as follows:

\(\begin{aligned}{c}{{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {\left( {{{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} } \right)^T}\\ = {{\mathop{\rm v}\nolimits} ^T}{\left( {{{\mathop{\rm u}\nolimits} ^T}} \right)^T}\\ = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \end{aligned}\)

Step 2: Determine the relation of the outer product

A \(n \times n\) matrix is an outer product \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}\).

Use theorem 3 to obtain the relation of the outer product as follows:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\left( {{\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}} \right)^T}\\ = {\left( {{{\mathop{\rm v}\nolimits} ^T}} \right)^T}{{\mathop{\rm u}\nolimits} ^T}\\ = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\end{aligned}\)

Thus, the relation of inner and outer products is \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) and \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\), respectively.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.