Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

6E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 3–6, verify that \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is an orthogonal set, and then find the orthogonal projection of \[y\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6. \[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\], \[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\], \[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

The projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is \[\left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

See the step by step solution

Step by Step Solution

Step 1: Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

Step 2: Check the set of given vectors is orthogonal or not

Given vectors are, \[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\] and \[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\].

Find the product \[{{\bf{u}}_1} \cdot {{\bf{u}}_2}\] as:

\[\begin{aligned}{c}{{\bf{u}}_1} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= - 4\left( 0 \right) + \left( { - 1} \right)\left( 1 \right) + 1\left( 1 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{u}}_1} \cdot {{\bf{u}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is orthogonal.

Step 3: The Orthogonal Decomposition Theorem

If \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\}\] is any orthogonal basis of \[w\], then \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\], where \[w\] is a subspace of \[{\mathbb{R}^n}\] and \[{\bf{\hat y}} \in w\], for which each \[{\bf{y}}\] can be written as \[{\bf{y}} = {\bf{\hat y}} + {\bf{z}}\] when \[{\bf{z}} \in {w^ \bot }\].

Step 4: Find the Orthogonal projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]

Find \[{\bf{y}} \cdot {{\bf{u}}_1}\], \[{\bf{y}} \cdot {{\bf{u}}_2}\], \[{{\bf{u}}_1} \cdot {{\bf{u}}_1}\] and \[{{\bf{u}}_2} \cdot {{\bf{u}}_2}\] first, where \[{\bf{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\\ &= \left( 6 \right)\left( { - 4} \right) + 4\left( { - 1} \right) + 1\left( 1 \right)\\ &= - 27\end{aligned}\]

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= \left( 6 \right)0 + 4\left( 1 \right) + 1\left( 1 \right)\\ &= 5\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\\ &= - 4\left( { - 4} \right) + \left( { - 1} \right)\left( { - 1} \right) + 1\left( 1 \right)\\ &= 18\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_2} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= 0\left( 0 \right) + \left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\\ &= 2\end{aligned}\]

Now, find the projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] by substituting the obtained values into \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{\bf{\hat y}} &= - \frac{{27}}{{18}}{{\bf{u}}_1} + \frac{5}{2}{{\bf{u}}_2}\\ &= - \frac{3}{2}\left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] + \frac{5}{2}\left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\end{aligned}\]

Hence, the projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is \[\left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.