• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q10E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Suppose radioactive substance A and B have decay constants of \(.02\) and \(.07\), respectively. If a mixture of these two substances at a time \(t = 0\) contains \({M_A}\) grams of \(A\) and \({M_B}\) grams of \(B\), then a model for the total amount of mixture present at time \(t\) is

\(y = {M_A}{e^{ - .02t}} + {M_B}{e^{ - .07t}}\) (6)

Suppose the initial amounts \({M_A}\) and are unknown, but a scientist is able to measure the total amounts present at several times and records the following points \(\left( {{t_i},{y_i}} \right):\left( {10,21.34} \right),\left( {11,20.68} \right),\left( {12,20.05} \right),\left( {14,18.87} \right)\) and \(\left( {15,18.30} \right)\).

a. Describe a linear model that can be used to estimate \({M_A}\) and \({M_B}\).

b. Find the least-squares curved based on (6).

(a) The required matrix and vectors are shown below:

Design Matrix: \(X = \left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)\)

Observation vector: \({\bf{y}} = \left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

Parameter vector: \(\beta = \left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\)

(b) The least-squares equation is \(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\).

See the step by step solution

Step by Step Solution

The General Linear Model

The equation of the general linear model is defined as:

\({\bf{y}} = X\beta + \in \)

Here, \({\bf{y}} = \left( {\begin{aligned}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\) is an observational vector, \(X = \left( {\begin{aligned}1&{{x_1}}& \cdots &{x_1^n}\\1&{{x_2}}& \cdots &{x_2^n}\\ \vdots & \vdots & \ddots & \vdots \\1&{{x_n}}& \cdots &{x_n^n}\end{aligned}} \right)\) is the design matrix, \(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\ \vdots \\{{\beta _n}}\end{aligned}} \right)\) is the parameter vector, and \( \in = \left( {\begin{aligned}{{ \in _1}}\\{{ \in _2}}\\ \vdots \\{{ \in _n}}\end{aligned}} \right)\) is the residual vector.

Find design matrix, observation vector, parameter vector for given data 

(a)

The given equation is \(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\) , and the given data sets are \(\left( {10,21.34} \right)\), \(\left( {11,20.68} \right)\), \(\left( {12,20.05} \right)\), \(\left( {14,18.87} \right)\) and \(\left( {15,18.30} \right)\).

Write the Design matrix, observational vector, and the parameter vector for the given equation and data set by using the information given in step 1.

Design matrix:

\(X = \left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)\)

Observational vector:

\({\bf{y}} = \left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

And the parameter vector for the given equation is,

\(\beta = \left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\)

Thus, the above values are the best fit for the given data set and equation.

Normal equation

The normal equation is given by,

\({X^T}X\beta = {X^T}{\bf{y}}\)

Find the least-squares curve

The general least-squares equation is given by \(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\), and to find the associated least-squares curve, the values of \({M_A},{M_B}\) are required, so find the values of \({M_A},{M_B}\) by using normal equation.

By using the obtained information from step 2, the normal equation will be,

\(\beta = {\left( {{X^T}X} \right)^{ - 1}}{X^T}{\bf{y}}\)

That implies;

\(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

Use the following steps to find the associated values for the obtained data in MATLAB.

  1. Enter the data \(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\) in the tab in the form of \({\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\).
  2. Use colons after that and press ENTER.

So, the value of \(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{19.94}\\{10.10}\end{aligned}} \right)\).

Now, substitute the obtained values into \(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\).

\(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\)

So, the required equation is \(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.