Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

The unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{4}{5}}\\{\frac{3}{5}}\end{array}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Definition of a unit vector

A unit vector is a vector with a length of 1. When dividing a nonzero vector v by its length, namely, multiply by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\), we get a unit vector u since \(\left( {\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}} \right)\left\| {\mathop{\rm v}\nolimits} \right\|\) is the length of u. The process of producing u from v is known as the normalizing v, and we describe that u is in the same direction as v.

Step 2: Determine the unit vector in the direction

It is given that \({\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\).

Compute the length of \({\mathop{\rm v}\nolimits} \) as shown below:

\(\begin{array}{c}\left\| {\mathop{\rm v}\nolimits} \right\| &= \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \\ &= \sqrt {{{\left( {\frac{8}{3}} \right)}^2} + {2^2}} \\ &= \sqrt {\left( {\frac{{64}}{9}} \right) + 4} \\ &= \sqrt {\frac{{64 + 36}}{9}} \\ &= \sqrt {\frac{{100}}{9}} \end{array}\)

Multiply v by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\) to obtain the unit vector \({\mathop{\rm u}\nolimits} \) as shown below:

\(\begin{array}{c}{\mathop{\rm u}\nolimits} = \frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}{\mathop{\rm v}\nolimits} \\ = \frac{1}{{\sqrt {\frac{{100}}{9}} }}\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\\ = \frac{1}{{\frac{{10}}{3}}}\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{8}{{\frac{{30}}{3}}}}\\{\frac{2}{{\frac{{10}}{3}}}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{4}{5}}\\{\frac{3}{5}}\end{array}} \right)\end{array}\)

Thus, the unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{4}{5}}\\{\frac{3}{5}}\end{array}} \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.