Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q14E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let \(\overline x = \frac{1}{n}\left( {{x_1} + \cdots + {x_n}} \right)\), and \(\overline y = \frac{1}{n}\left( {{y_1} + \cdots + {y_n}} \right)\). Show that the least-squares line for the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) must pass through \(\left( {\overline x ,\overline y } \right)\). That is, show that \(\overline x \) and \(\overline y \) satisfies the linear equation \(\overline y = {\hat \beta _0} + {\hat \beta _1}\overline x \). (Hint: Derive this equation from the vector equation \({\bf{y}} = X{\bf{\hat \beta }} + \in \). Denote the first column of \(X\) by 1. Use the fact that the residual vector \( \in \) is orthogonal to the column space of \(X\) and hence is orthogonal to 1.)

It is verified that, \(\bar y\) and \(\) satisfies the linear equation \(\bar y = {\beta _0} + \bar x{\beta _1}\).

See the step by step solution

Step by Step Solution

The General Linear Model

The equation of the general linear model is defined as:

\({\bf{y}} = X\beta + \in \)

Here, \({\bf{y}} = \left( {\begin{aligned}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\) is an observational vector, \(X = \left( {\begin{aligned}1&{{x_1}}& \cdots &{x_1^n}\\1&{{x_2}}& \cdots &{x_2^n}\\ \vdots & \vdots & \ddots & \vdots \\1&{{x_n}}& \cdots &{x_n^n}\end{aligned}} \right)\) is the design matrix, \(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\ \vdots \\{{\beta _n}}\end{aligned}} \right)\) is parameter vector, and \( \in = \left( {\begin{aligned}{{ \in _1}}\\{{ \in _2}}\\ \vdots \\{{ \in _n}}\end{aligned}} \right)\) is a residual vector.

Determine whether \(\overline x \) and \(\overline y \) satisfies the given linear equation 

Write the design matrix as \(X = \left( {\begin{aligned}1&{\bf{x}}\end{aligned}} \right)\).

As the equation of the general linear model is given by \({\bf{y}} = X\beta + \in \). Isolate residual vector from the equation.

\( \in = {\bf{y}} - X{\bf{\hat \beta }}\)

As the residual vector is orthogonal to columns of \(X\), so \(1 \cdot \in = 0\).

\(\begin{aligned}1 \cdot \left( {{\bf{y}} - X{\bf{\hat \beta }}} \right) = 0\\{1^T}{\bf{y}} - \left( {{1^T}X} \right){\bf{\hat \beta }} = 0\\\left( {\begin{aligned}1\\1\\ \vdots \\1\end{aligned}} \right)\left( {\begin{aligned}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right) - {\left( {\begin{aligned}1\\1\\ \vdots \\1\end{aligned}} \right)^T}\left( {\begin{aligned}{{x_1}}\\{{x_2}}\\ \vdots \\{{x_n}}\end{aligned}} \right) \cdot {\bf{\hat \beta }} = 0\\\left( {{y_1} + {y_2} + \cdots + {y_n}} \right) - \left( {\begin{aligned}{1 + 1 + \ldots n{\rm{ times}}}&{{x_1} + {x_2} + \cdots + {x_n}}\end{aligned}} \right) \cdot {\bf{\hat \beta }} = 0\\\sum y - \left( {\begin{aligned}n&{\sum x }\end{aligned}} \right)\left( {\begin{aligned}{{\beta _0}}\\{{\beta _1}}\end{aligned}} \right) = 0\\\sum y - \left( {n{\beta _0} + \sum x {\beta _1}} \right) = 0\end{aligned}\)

Write \(\sum y \) as \(n\bar y\) and \(\sum x \) as \(n\bar x\).

\(\begin{aligned}n\bar y - \left( {n{\beta _0} + n\bar x{\beta _1}} \right) = 0\\n\bar y - n{\beta _0} - n\bar x{\beta _1} = 0\\\bar y - {\beta _0} - \bar x{\beta _1} = 0\\\bar y = {\beta _0} + \bar x{\beta _1}\end{aligned}\)

This implies that \(\bar y\) and \(\bar x\) satisfies the linear equation \(\bar y = {\beta _0} + \bar x{\beta _1}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.