Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q24E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use the Gram–Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

The orthogonal basis is,\(W = \left\{ {\left( {\begin{aligned}{{}{r}}{ - 10}\\2\\{ - 6}\\{16}\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}3\\3\\{ - 3}\\0\\3\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}6\\0\\6\\6\\0\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}0\\5\\0\\0\\{ - 5}\end{aligned}} \right)} \right\}\).

See the step by step solution

Step by Step Solution

Step 1: \(QR\) factorization of a Matrix

A matrix with order \(m \times n\) can be written as the multiplication of an upper triangular matrix \(R\) and a matrix \(Q\) which is formed by applying the Gram–Schmidt orthogonalization process to the \({\rm{col}}\left( A \right)\).

The matrix \(R\) can be found by the formula \({Q^T}A = R\).

By applying Gram-Schmidt orthogonal process, we can determine the orthogonal basis for the column space of \(A\)

Step 2: Finding the matrix \(R\)

Given that, \(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\).

Now with the help of MATLAB, we shall find the orthogonal basis of the column space

MATLAB Command:

Enter matrix A in MATLAB.

>> A=(-10 13 7 -11; 2 1 5 3; -6 3 13 -3; 16 -16 -2 5; 2 1 -5 -7);

The required function:

function(B) = GramSchmidt(A)

(m,n) = size(A);

(U, jb) = rref(A);

x = length(jb);

B = zeros(m,x);

for i = 1:x

C(:,i)= A(:,(jb(i)));

end

B=C;

for i = 2:x

for j = 1:i-1

B(:,i) = C(:,i)- dot(C(:,i),B(:,j))/dot(B(:,j),B(:,j))* B(:,j) ;

end

end

end

Find the orthogonal basis:

(B) = GramSchmidt(A)

\(\begin{aligned}{}B &= \\\begin{aligned}{{}{r}}{ - 10.0000}&{3.0000}&{8.5000}&{ - 7.9620}\\{2.0000}&{3.0000}&{6.5000}&{5.3232}\\{ - 6.0000}&{ - 3.0000}&{11.5000}&{1.1103}\\{16.0000}&0&{ - 2.0000}&{4.2852}\\{2.0000}&{3.0000}&{ - 3.5000}&{ - 8.2510}\end{aligned}\end{aligned}\)

So, the orthogonal basis is\(W = \left\{ {\left( {\begin{aligned}{{}{r}}{ - 10}\\2\\{ - 6}\\{16}\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}3\\3\\{ - 3}\\0\\3\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}6\\0\\6\\6\\0\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}0\\5\\0\\0\\{ - 5}\end{aligned}} \right)} \right\}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.