Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

A simple curve that often makes a good model for the variable costs of a company, a function of the sales level \(x\), has the form \(y = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\). There is no constant term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above, with data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

b. Find the least-squares curve of the form above to fit the data \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\), with values in thousands. If possible, produce a graph that shows the data points and the graph of the cubic approximation.

(a) The required matrix and vectors are:

Design Matrix: \(X = \left( {\begin{aligned}{{x_1}}&{x_1^2}&{x_1^3}\\ \vdots & \vdots & \vdots \\{{x_n}}&{x_n^2}&{x_n^3}\end{aligned}} \right)\)

Parameter vector: \(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\{{\beta _3}}\end{aligned}} \right)\)

(b) The least-squares equation is \({\bf{y}} = 0.5132x + 0.3348{x^2} + 0.001016{x^3}\).

Graph:

See the step by step solution

Step by Step Solution

The General Linear Model

The equation of the general linear model is defined as:

\({\bf{y}} = X\beta + \in \)

Here, \({\bf{y}} = \left( {\begin{aligned}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\) is an observational vector, \(X = \left( {\begin{aligned}1&{{x_1}}& \cdots &{x_1^n}\\1&{{x_2}}& \cdots &{x_2^n}\\ \vdots & \vdots & \ddots & \vdots \\1&{{x_n}}& \cdots &{x_n^n}\end{aligned}} \right)\) is the design matrix, \(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\ \vdots \\{{\beta _n}}\end{aligned}} \right)\) is parameter vector, and \( \in = \left( {\begin{aligned}{{ \in _1}}\\{{ \in _2}}\\ \vdots \\{{ \in _n}}\end{aligned}} \right)\) is a residual vector.

Find design matrix, observation vector, parameter vector for the given equation 

(a)

The given equation is \({\bf{y}} = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\) , and the given data sets are \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

Write the Design matrix, observational vector, and the parameter vector for the given equation and data set by using the information given in step 1.

Design matrix:

\(X = \left( {\begin{aligned}{{x_1}}&{x_1^2}&{x_1^3}\\ \vdots & \vdots & \vdots \\{{x_n}}&{x_n^2}&{x_n^3}\end{aligned}} \right)\)

Observational vector:

\({\bf{y}} = \left( {\begin{aligned}{{y_1}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\)

And the parameter vector for the given equation is,

\(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\{{\beta _3}}\end{aligned}} \right)\)

Find design matrix, observation vector for the given data set

(b)

The given data points are: \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\).

Find \(X\), \(\beta \) and \({\bf{y}}\) for the given data set by using the models in step 2.

\(\begin{aligned}X = \left( {\begin{aligned}4&{{4^2}}&{{4^3}}\\6&{{6^2}}&{{6^3}}\\8&{{8^2}}&{{8^3}}\\{10}&{{{10}^2}}&{{{10}^3}}\\{12}&{{{12}^2}}&{{{12}^3}}\\{14}&{{{14}^2}}&{{{14}^3}}\\{16}&{{{16}^2}}&{{{16}^3}}\\{18}&{{{18}^2}}&{{{18}^3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)\end{aligned}\)

\({\bf{y}} = \left( {\begin{aligned}{1.58}\\{2.08}\\{2.5}\\{2.8}\\{3.1}\\{3.4}\\{3.8}\\{4.32}\end{aligned}} \right)\)

The normal equation 

The normal equation is defined as:

\({X^T}X\beta = {X^T}{\bf{y}}\)

Find the least-squares curve

The general least-squares equation is given by \({\bf{y}} = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\), and to find the associated least-squares curve, the values of \({\beta _1},{\beta _2}\) are required, so find the values of \({\beta _1},{\beta _2},{\beta _3}\) by using normal equation.

By using the obtained information from step 2, the normal equation will be,

\(\beta = {\left( {{X^T}X} \right)^{ - 1}}{X^T}{\bf{y}}\)

That implies;

\(\left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\{{\beta _3}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)}^T}\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)^T}\left( {\begin{aligned}{1.58}\\{2.08}\\{2.5}\\{2.8}\\{3.1}\\{3.4}\\{3.8}\\{4.32}\end{aligned}} \right)\)

Use the following steps to find the associated values for the obtained data in MATLAB.

  1. Enter the data \(\left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\{{\beta _3}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)}^T}\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)^T}\left( {\begin{aligned}{1.58}\\{2.08}\\{2.5}\\{2.8}\\{3.1}\\{3.4}\\{3.8}\\{4.32}\end{aligned}} \right)\)in the tab in the form of \({\left( {{{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)}^T}\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}4&{16}&{64}\\6&{36}&{216}\\8&{64}&{512}\\{10}&{100}&{1000}\\{12}&{144}&{1728}\\{14}&{196}&{2744}\\{16}&{256}&{4096}\\{18}&{324}&{5832}\end{aligned}} \right)^T}\left( {\begin{aligned}{1.58}\\{2.08}\\{2.5}\\{2.8}\\{3.1}\\{3.4}\\{3.8}\\{4.32}\end{aligned}} \right)\).
  2. Use colons after that and press ENTER.

So, the value of \(\left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\{{\beta _2}}\end{aligned}} \right)\) is: \(\left( {\begin{aligned}{0.5132}\\{ - 0.03348}\\{0.001016}\end{aligned}} \right)\)

Now, substitute the obtained values into \({\bf{y}} = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\).

\({\bf{y}} = 0.5132x + 0.3348{x^2} + 0.001016{x^3}\)

So, the required equation is \({\bf{y}} = 0.5132x + 0.3348{x^2} + 0.001016{x^3}\).

Graph the least-squares curve

The obtained least square curve is \({\bf{y}} = 0.5132x + 0.3348{x^2} + 0.001016{x^3}\).

The graph of the curve is shown below:

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.