Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Linear Algebra and its Applications
Found in: Page 331
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

The length of x is \(\left\| {\mathop{\rm x}\nolimits} \right\| = 7\).

See the step by step solution

Step by Step Solution

Step 1: The length of a vector

The nonnegative scalar \(\left\| {\mathop{\rm v}\nolimits} \right\|\) is defined as length (or norm) as shown below:

\(\left\| {\mathop{\rm v}\nolimits} \right\| = \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } = \sqrt {v_1^2 + v_2^2 + \cdots + v_n^2} ,\) and \({\left\| {\mathop{\rm v}\nolimits} \right\|^2} = {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} \)

Step 2: Compute

\(\left\| {\mathop{\rm x}\nolimits} \right\|\)

It is given that \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\).

Compute the length of \({\mathop{\rm x}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left\| {\mathop{\rm x}\nolimits} \right\| &= \sqrt {{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} } \\ &= \sqrt {{6^2} + {{\left( { - 2} \right)}^2} + {3^2}} \\ &= \sqrt {36 + 4 + 9} \\ &= \sqrt {49} \\ &= 7\end{aligned}\)

Thus, the length of x is \(\left\| {\mathop{\rm x}\nolimits} \right\| = 7\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.