• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Chapter 7: Symmetric Matrices and Quadratic Forms

Expert-verified
Linear Algebra and its Applications
Pages: 395 - 436
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

145 Questions for Chapter 7: Symmetric Matrices and Quadratic Forms

  1. Classify the quadratic forms in Exercises 9-18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

    Found on Page 395
  2. 10.Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

    Found on Page 395
  3. Question:Repeat Exercise 9 with \(S = \left( {\begin{array}{*{20}{c}}5&4&2\\4&{11}&4\\2&4&5\end{array}} \right)\).

    Found on Page 395
  4. Question: If A is \(m \times n\), then the matrix \(G = {A^T}A\) is called the Gram matrix of A. In this case, the entries of G are the inner products of the columns of A. (See Exercises 9 and 10).

    Found on Page 395
  5. Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

    Found on Page 395
  6. Question 11: Prove that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\), where P is a \(n \times n\) positive semidefinite matrix with the same rank as A and where Q is an \(n \times n\) orthogonal matrix. (Hint: Use a singular value decomposition, \(A = U\sum {V^T}\), and observe that \(A = \left( {U\sum {U^T}} \right)\left( {U{V^T}} \right)\).) This decomposition is used, for instance, in mechanical engineering to model the deformation of a material. The matrix P describe the stretching or compression of the material (in the directions of the eigenvectors of P), and Q describes the rotation of the material in space.

    Found on Page 395
  7. Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

    Found on Page 395
  8. Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

    Found on Page 395
  9. Question: 12. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

    Found on Page 395
  10. Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

    Found on Page 395

Related Math Textbooks with Solutions

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.