Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q24E

Expert-verified
Linear Algebra and its Applications
Found in: Page 395
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let \(A = \left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&{\,\,\,2}&{ - 1}\\{ - 1}&{ - 1} &{\,\,\,2}\end{aligned}} \right)\),\({{\rm{v}}_1} = \left( {\begin{aligned}{{}}{ - 1}\\{\,\,\,0}\\{\,\,1}\end{aligned}} \right)\) and and\({{\rm{v}}_2} = \left( {\begin{aligned}{{}}{\,\,\,1}\\{\, - 1}\\{\,\,\,\,1}\end{aligned}} \right)\). Verify that\({{\rm{v}}_1}\), \({{\rm{v}}_2}\) an eigenvector of \(A\). Then orthogonally diagonalize \(A\).

It is verified that \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\) are the eigenvector of \(A\). The orthogonal diagonalization is \(\left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)\left( {\begin{aligned}{{}}1&0&0\\0&4&0\\0&0&1\end{aligned}} \right){\left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)^{ - 1}}\).

See the step by step solution

Step by Step Solution

Step 1: Verify the eigenvectors

For the matrix \(A\), the given eigenvectors \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\) must satisfy the characteristic equation \(A{\bf{x}} = \lambda {\bf{x}}\). On verifying it for the vector \({{\rm{v}}_1}\), we proceed as follows:

\(\begin{aligned}{}\left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&2&{ - 1}\\{ - 1}&{ - 1}&2\end{aligned}} \right)\left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right) = \left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right)\\ = 1\left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right)\end{aligned}\)

Thus, \(\left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right)\) is eigenvector of A for the eigenvalue \(\lambda = 1\). Now, verifying it for the vector \({{\rm{v}}_2}\), we proceed as follows:

\(\begin{aligned}{}\left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&2&{ - 1}\\{ - 1}&{ - 1}&2\end{aligned}} \right)\left( \begin{aligned}{}\,\,\,1\\ - 1\\\,\,\,1\end{aligned} \right) = \left( \begin{aligned}{}\,\,\,4\\ - 4\\\,\,\,4\end{aligned} \right)\\ = 4\left( \begin{aligned}{}\,\,\,1\\ - 1\\\,\,\,\,1\end{aligned} \right)\end{aligned}\)

Thus, \(\left( \begin{aligned}{}\,\,\,1\\ - 1\\\,\,\,\,1\end{aligned} \right)\) is eigenvector of A for the eigenvalue \(\lambda = 4\).

Step 2: Find the matrix \(P\) and \(D\)

A matrix \(A\) is diagonalized as \(A = PD{P^{ - 1}}\), where \(P\) is orthogonal matrix of normalized Eigen vectors of matrix \(A\)and \(D\) is a diagonal matrix having Eigen values of matrix \(A\) on its principle diagonal.

For the Eigen value \(\lambda = 1\), the basis for its Eigenspace is obtained by solving the system of equations \(\left( {A - I} \right){\bf{x}} = 0\). On solving, two Eigen vectorsare obtained as \(\left\{ {\left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right),\left( \begin{aligned}{}1\\1\\0\end{aligned} \right)} \right\}\).This set of vectors is converted to an orthogonal basis via orthogonal projection to obtain it as\(\left\{ {\left( \begin{aligned}{} - 1\\\,\,\,0\\\,\,\,1\end{aligned} \right),\left( \begin{aligned}{}\,\,1\\\,\,2\\\,\,\,1\end{aligned} \right)} \right\}\).

For the Eigen value\(\lambda = 4\), the Eigen vectors is given as \(\left( \begin{aligned}{}\,\,\,1\\ - 1\\\,\,\,1\end{aligned} \right)\).

The normalized vectors are \({{\bf{u}}_1} = \left( \begin{aligned}{} - 1/\sqrt 2 \\\,\,\,\,\,\,\,0\\\,\,\,1/\sqrt 2 \end{aligned} \right)\)and \({{\bf{u}}_2} = \left( \begin{aligned}{}\,\,\,1/\sqrt 3 \\ - 1/\sqrt 3 \\\,\,\,1/\sqrt 3 \end{aligned} \right)\), and\({{\bf{u}}_2} = \left( \begin{aligned}{}1/\sqrt 6 \\\,2/\sqrt 6 \\\,1/\sqrt 6 \end{aligned} \right)\).So, the normalized matrix \(P\) is given as;

\(\begin{aligned}{}P &= \left( {{{\bf{u}}_1}\,\,{{\bf{u}}_2}\,{{\bf{u}}_3}} \right)\\ &= \left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)\end{aligned}\)

Here, the matrix \(D\) is obtained as \(D = \left( {\begin{aligned}{{}}1&0&0\\0&4&0\\0&0&1\end{aligned}} \right)\).

Step 3: Diagonalize matrix \(A\)

The matrix \(A\) is diagonalized as \(A = PD{P^{ - 1}}\). Thus, the orthogonal diagonalization is as follows:

\(\begin{aligned}{}A &= PD{P^{ - 1}}\\ &= \left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)\left( {\begin{aligned}{{}}1&0&0\\0&4&0\\0&0&1\end{aligned}} \right){\left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)^{ - 1}}\end{aligned}\)

It is verified that \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\) are the eigenvector of \(A\). The orthogonal diagonalization is \(\left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)\left( {\begin{aligned}{{}}1&0&0\\0&4&0\\0&0&1\end{aligned}} \right){\left( {\begin{aligned}{{}}{ - 1/\sqrt 2 }&{1/\sqrt 3 }&{1/\sqrt 6 }\\0&{ - 1/\sqrt 3 }&{2/\sqrt 6 }\\{1/\sqrt 2 }&{\,\,\,\,0}&{\,\,\,1/\sqrt 6 }\end{aligned}} \right)^{ - 1}}\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.