• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q37E

Expert-verified
Linear Algebra and its Applications
Found in: Page 395
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

37. \(\left( {\begin{aligned}{{}}{\bf{6}}&{\bf{2}}&{\bf{9}}&{ - {\bf{6}}}\\{\bf{2}}&{\bf{6}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{9}}&{ - {\bf{6}}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{\bf{9}}&{\bf{2}}&{\bf{6}}\end{aligned}} \right)\)

\(P = \frac{1}{2}\left( {\begin{aligned}{{}}{ - 1}&1&{ - 1}&1\\1&1&{ - 1}&{ - 1}\\{ - 1}&1&1&{ - 1}\\1&1&1&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{{}}{19}&0&0&0\\0&{11}&0&0\\0&0&5&0\\0&0&0&{ - 11}\end{aligned}} \right)\)

See the step by step solution

Step by Step Solution

Step 1:Find the eigenvalues of the matrix

Use the following MATLAB code to find the eigenvalues of the given matrix:

\(\begin{aligned}{} > > A = \left( {\begin{aligned}{{}}6&2&9&{ - 6}\end{aligned};\,\begin{aligned}{{}}2&6&{ - 6}&9\end{aligned};\,\begin{aligned}{{}}9&{ - 6}&6&2\end{aligned};\,\begin{aligned}{{}}{ - 6}&9&2&6\end{aligned}} \right);\\ > > \left( {\begin{aligned}{{}}{\rm{E}}&{\rm{V}}\end{aligned}} \right) = {\rm{eigs}}\left( A \right);\end{aligned}\)

So, the eigenvalues are\(E = \left( {\begin{aligned}{{}}{19}\\{11}\\5\\{ - 11}\end{aligned}} \right)\).

Step 2: Find the eigenvectors of the matrix

Use the following MATLAB code to find eigenvectors.

\( > > {v_i} = {\rm{nullbasis}}\left( {A - E\left( i \right)*{\rm{eye}}\left( 4 \right)} \right)\)

Following are the eigenvectors of A.

\({v_1} = \left( {\begin{aligned}{{}}{ - 1}\\1\\{ - 1}\\1\end{aligned}} \right)\), \({v_2} = \left( {\begin{aligned}{{}}1\\1\\1\\1\end{aligned}} \right)\), \({v_3} = \left( {\begin{aligned}{{}}{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right)\), and \({v_4} = \left( {\begin{aligned}{{}}1\\{ - 1}\\{ - 1}\\1\end{aligned}} \right)\)

Step 3: Find the orthogonal projection

The orthogonal projections can be calculated as follows:

\(\begin{aligned}{}{{\bf{u}}_1} &= \frac{1}{{\left\| {{v_1}} \right\|}}{v_1}\\ &= \frac{1}{2}\left( {\begin{aligned}{{}}{ - 1}\\1\\{ - 1}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\{\frac{1}{2}}\\{ - \frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\left\| {{v_2}} \right\|}}{v_2}\\ &= \frac{1}{2}\left( {\begin{aligned}{{}}1\\1\\1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\frac{1}{2}}\\{\frac{1}{2}}\\{\frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_3} &= \frac{1}{{\left\| {{v_3}} \right\|}}{v_3}\\ &= \frac{1}{2}\left( {\begin{aligned}{{}}{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\{ - \frac{1}{2}}\\{\frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_4} &= \frac{1}{{\left\| {{v_4}} \right\|}}{v_4}\\ &= \frac{1}{2}\left( {\begin{aligned}{{}}1\\{ - 1}\\{ - 1}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\frac{1}{2}}\\{ - \frac{1}{2}}\\{ - \frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

Step 4: Find the matrix P and D

The matrix P can be written using orthogonal projections:

\(\begin{aligned}{}P &= \left( {\begin{aligned}{{}}{ - \frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}&{ - \frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\end{aligned}} \right)\\ &= \frac{1}{2}\left( {\begin{aligned}{{}}{ - 1}&1&{ - 1}&1\\1&1&{ - 1}&{ - 1}\\{ - 1}&1&1&{ - 1}\\1&1&1&1\end{aligned}} \right)\end{aligned}\)

The diagonalized matrix can be written as\(D = \left( {\begin{aligned}{{}}{19}&0&0&0\\0&{11}&0&0\\0&0&5&0\\0&0&0&{ - 11}\end{aligned}} \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.