Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7.4-19E

Expert-verified
Linear Algebra and its Applications
Found in: Page 395
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

19. Show that the columns of \(V\) are eigenvectors of \({A^T}A\), the columns of \(U\) are eigenvectors of \(A{A^T}\), and the diagonal entries of \({\bf{\Sigma }}\) are the singular values of \(A\). (Hint: Use the SVD to compute \({A^T}A\) and \(A{A^T}\).)

It is verified that, \(V\) and \(U\) are eigenvectors of \({A^T}A\) and \(A{A^T}\) respectively, and the columns of \(U\) re eigenvectors of \(A{A^T}\) and the diagonal elements of \(\Sigma \) are the singular values of \(A\).

See the step by step solution

Step by Step Solution

Step 1: Find the product of \({A^T}\) and \(A\)

As singular value decomposition of \(A\) is \(A = U\Sigma {V^T}\), then

\(\begin{array}{c}{A^T}A = {\left( {U\Sigma {V^T}} \right)^T}U\Sigma {V^T}\\ = V\mathop \Sigma \limits^T {U^T}\Sigma {V^T}\\ = V\left( {\mathop \Sigma \limits^T \Sigma } \right){V^T}\\ = V\left( {\mathop \Sigma \limits^T \Sigma {V^{ - 1}}} \right)\end{array}\)

Therefore, from the Diagonalization theorem. Singular values are the diagonal entries in \(\Sigma \) matrix. The columns of matrix \(V\) are the eigenvectors of \({A^T}A\).

Step 2: Find the product of \(A\) and \({A^T}\)

Now, find the product of \(A = U\Sigma {V^T}\) and its transpose.

\(\begin{array}{c}A{A^T} = U\Sigma {V^T}{\left( {U\Sigma {V^T}} \right)^T}\\ = U\mathop \Sigma \limits^T {V^T}V\mathop \Sigma \limits^T {U^T}\\ = U\left( {\Sigma \mathop \Sigma \limits^T } \right){U^T}\\ = U\left( {\Sigma \mathop \Sigma \limits^T } \right){U^{ - 1}}\end{array}\)

Thus, it can be observed that \(U\) diagonalizes \(A{A^T}\) and the columns of \(U\) must be eigenvectors of \(A{A^T}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.