• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7E

Expert-verified
Linear Algebra and its Applications
Found in: Page 395
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.

The matrix P is \(P = \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\).

The new quadratic form is \(6y_1^2 - 4y_2^2\).

See the step by step solution

Step by Step Solution

Step 1: Find the eigenvalues of the coefficient matrix of the quadratic equation

The coefficient matrix for the equation \(x_1^2 + 10{x_1}{x_2} + x_2^2\) is shown below:

\(A = \left( {\begin{aligned}{{}{}}1&5\\5&1\end{aligned}} \right)\)

The characteristic equation of A can be written as:

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left| {\begin{aligned}{{}{}}{1 - \lambda }&5\\5&{1 - \lambda }\end{aligned}} \right| &= 0\\{\left( {1 - \lambda } \right)^2} - 25 &= 0\\\lambda &= 6, - 4\end{aligned}\)

Step 2: Find the eigen vector of matrix A

Find the eigenvector for \(\lambda = 6\):

\(\begin{aligned}{}\left( {A - 6I} \right)X &= 0\\\left( {\begin{aligned}{{}{}}{ - 5}&5\\5&{ - 5}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}{}}0\\0\end{aligned}} \right)\\ - 5{x_1} + 5{x_2} &= 0\\{x_1} - {x_2} &= 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}1\\1\end{aligned}} \right)\).

Find the eigenvector for \(\lambda = - 4\):

\(\begin{aligned}{}\left( {A + 4I} \right)X &= 0\\\left( {\begin{aligned}{{}{}}5&5\\5&5\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}{}}0\\0\end{aligned}} \right)\\5{x_1} + 5{x_2} &= 0\\{x_1} + {x_2} &= 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}{ - 1}\\1\end{aligned}} \right)\).

Step 3: Find normalized eigenvectors of A

The normalized eigenvectors are:

\(\begin{aligned}{}{{\bf{u}}_1} &= \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}{}}1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}{}}{ - 1}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

Step 4: Write the matrix P and D

Write matrix P using the normalized eigenvectors:

\(\begin{aligned}{}P &= \left( {\begin{aligned}{{}{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

Write matrix D using the eigenvalues of A as:

\(D = \left( {\begin{aligned}{{}{}}6&0\\0&{ - 4}\end{aligned}} \right)\)

Step 5: Find the new quadratic form

Consider the expression \({{\bf{x}}^T}A{\bf{x}}\).

\(\begin{aligned}{}{{\bf{x}}^T}A{\bf{x}} &= {\left( {P{\bf{y}}} \right)^T}A\left( {P{\bf{y}}} \right)\\ &= {{\bf{y}}^T}{P^T}AP{\bf{y}}\\ &= {{\bf{y}}^r}D{\bf{y}}\\ &= \left( {\begin{aligned}{{}{}}{{{\bf{y}}_1}}&{{{\bf{y}}_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}6&0\\0&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{{\bf{y}}_1}}\\{{{\bf{y}}_2}}\end{aligned}} \right)\\ &= 6y_1^2 - 4y_2^2\end{aligned}\)

Thus, the new quadratic form is \(6y_1^2 - 4y_2^2\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.