Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q-8.2-21E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 21–24, a, b, and c are noncollinear points in \({\mathbb{R}^{\bf{2}}}\) and p is any other point in \({\mathbb{R}^{\bf{2}}}\). Let \(\Delta {\bf{abc}}\) denote the closed triangular region determined by a, b, and c, and let \(\Delta {\bf{pbc}}\) be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that \(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\) is positive, where \(\overrightarrow {\bf{a}} \), \(\overrightarrow {\bf{b}} \) and \(\overrightarrow {\bf{c}} \) are the standard homogeneous forms for the points.

21. Show that the area of \(\Delta {\bf{abc}}\) is \(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]/2\).

[Hint: Consult Sections 3.2 and 3.3, including the Exercises.]

The area of \(\Delta {\rm{abc}}\) is \(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\rm{a}} }&{\overrightarrow {\rm{b}} }&{\overrightarrow {\rm{c}} }\end{array}} \right]/2\).

See the step by step solution

Step by Step Solution

State the vertices of the triangle

Let \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{a_2}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\end{array}} \right]\), and \({\bf{c}} = \left[ {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\end{array}} \right]\) be the vertices of \(\Delta {\rm{abc}}\).

Then, \(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\) can be represented as shown below:

\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right]\)

Find the area of the triangle 

The area of the triangle can be determined as shown below:

\(\begin{array}{c}{\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\left[ {\left( {{\rm{a}} \times {\rm{b}}} \right) + \left( {{\rm{b}} \times {\rm{c}}} \right) + \left( {{\rm{c}} \times {\rm{a}}} \right)} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ {\left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{b}}_{\rm{1}}}}&{{{\rm{b}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{b}}_{\rm{1}}}}&{{{\rm{b}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{c}}_{\rm{1}}}}&{{{\rm{c}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{c}}_{\rm{1}}}}&{{{\rm{c}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right|} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ \begin{array}{l}\left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}}\\ + \left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}}\\ + \left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}\end{array} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}} \right] \cdot {\bf{k}}\end{array}\)

Simplify further as shown below:

\(\begin{array}{c}{\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}} \right] \cdot {\bf{k}}\\ = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right) + \left( {{b_1}{c_2} - {b_2}{c_1}} \right) + \left( {{c_1}{a_2} - {a_1}{c_2}} \right)} \right] \cdot {\bf{k}} \cdot {\bf{k}}\\ = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right) + \left( {{b_1}{c_2} - {b_2}{c_1}} \right) + \left( {{c_1}{a_2} - {a_1}{c_2}} \right)} \right]\\ = \frac{1}{2}\det \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right]\end{array}\)

Here, \(\det \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\).

Thus, \({\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\).

Hence, it is proved that the area of \(\Delta {\rm{abc}}\) is \(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\rm{a}} }&{\overrightarrow {\rm{b}} }&{\overrightarrow {\rm{c}} }\end{array}} \right]/2\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.