Americas
Europe
Q10E
Expert-verifiedIn Exercises 9 and 10, mark each statement True or False. Justify each answer.
10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.
b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.
c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).
d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.
e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.
a)
According to theorem 5,when the set\(S\) is affinely dependent. Then the set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.
Thus, the given statement (a) is False.
b)
When theset \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.
Thus, the given statement (b) is True.
c)
Theorem 6 states that consider the set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is an affinely independent in \({\mathbb{R}^n}\). Then for everyp in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}\). Thus, it is truly only for affinely independence.
Thus, the given statement (c) is False.
d)
Barycentric coordinates can be used for smoothly interpolating the vertex information over the interior of a triangle. In an interpolation, the barycentric coordinates are used as weights during the linear combination of the vertex at a point.
Thus, the given statement (d) is False.
e)
If a point p is on the edge of the triangle, then one of the barycentric coordinates of p may be zero.
Thus, the given statement (d) is True.
94% of StudySmarter users get better grades.
Sign up for free