• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

Suggested languages for you:

Americas

Europe

Q10E

Expert-verified
Found in: Page 437

### Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

# In Exercises 9 and 10, mark each statement True or False. Justify each answer.10.a. If $$\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}$$ is an affinely dependent set in $${\mathbb{R}^n}$$, then the set $$\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}$$ in $${\mathbb{R}^{n + 1}}$$ of homogeneous forms may be linearly independent.b. If $${{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}$$ and $${{\mathop{\rm v}\nolimits} _4}$$ are in $${\mathbb{R}^3}$$ and if the set $$\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}$$ is linearly independent, then $$\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}$$ is affinely independent.c. Given $$S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}$$ in $${\mathbb{R}^n}$$, each $${\bf{p}}$$ in$${\mathop{\rm aff}\nolimits} S$$ has a unique representation as an affine combination of $${{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}$$.d. When color information is specified at each vertex $${{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}$$ of a triangle in $${\mathbb{R}^3}$$, then the color may be interpolated at a point p in $${\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}$$ using the barycentric coordinates of p.e. If T is a triangle in $${\mathbb{R}^2}$$ and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.

1. The given statement is False.
2. The given statement is True.
3. The given statement is False.
4. The given statement is False.
5. The given statement is True.
See the step by step solution

## Step 1: Determine whether the statement is True or False

a)

According to theorem 5,when the set$$S$$ is affinely dependent. Then the set $$\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}$$ of homogeneous forms in $${\mathbb{R}^{n + 1}}$$ is linearly dependent.

Thus, the given statement (a) is False.

## Step 2: Determine whether the statement is True or False

b)

When theset $$\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}$$ is linearly independent, then the set $$\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}$$ is affinely independent.

Thus, the given statement (b) is True.

## Step 3: Determine whether the statement is True or False

c)

Theorem 6 states that consider the set $$S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}$$ is an affinely independent in $${\mathbb{R}^n}$$. Then for everyp in$${\mathop{\rm aff}\nolimits} S$$ has a unique representation as an affine combination of $${{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}$$. Thus, it is truly only for affinely independence.

Thus, the given statement (c) is False.

## Step 4: Determine whether the statement is True or False

d)

Barycentric coordinates can be used for smoothly interpolating the vertex information over the interior of a triangle. In an interpolation, the barycentric coordinates are used as weights during the linear combination of the vertex at a point.

Thus, the given statement (d) is False.

## Step 5: Determine whether the statement is True or False

e)

If a point p is on the edge of the triangle, then one of the barycentric coordinates of p may be zero.

Thus, the given statement (d) is True.