Americas
Europe
Q11E
Expert-verifiedQuestion: In Exercises 11 and 12, mark each statement True or False. Justify each answer.
11.a. The cubic Bezier curve is based on four control points.
b. Given a quadratic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\), the directed line segment \({{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}\) (from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\)) is the tangent vector to the curve at \({{\mathop{\rm p}\nolimits} _0}\).
c. When two quadratic Bezier curves with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\) and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) are joined at \({{\mathop{\rm p}\nolimits} _2}\), the combined Bezier curve will have \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\)if\({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment between \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _3}\).
a)
The cubic Bezier curve is determined by four control points. The standard form is shown below:
\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^3}{{\bf{p}}_0} + 3t{\left( {1 - t} \right)^2}{{\bf{p}}_1} + 3{t^2}\left( {1 - t} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\)
Thus, the given statement (a) is True.
b)
Recall that the tangent vector at \({{\mathop{\rm p}\nolimits} _0}\), for instance, from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\), and it is twice as long as the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).
Thus, the given statement (b) is False.
c)
It is true that when two quadratic Bezier curve with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\)and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).
The Bezier curve has \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\) when joined at \({{\mathop{\rm p}\nolimits} _2}\), then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).
Thus, the given statement (c) is True.
94% of StudySmarter users get better grades.
Sign up for free