• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q11E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11.a. The cubic Bezier curve is based on four control points.

b. Given a quadratic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\), the directed line segment \({{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}\) (from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\)) is the tangent vector to the curve at \({{\mathop{\rm p}\nolimits} _0}\).

c. When two quadratic Bezier curves with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\) and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) are joined at \({{\mathop{\rm p}\nolimits} _2}\), the combined Bezier curve will have \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\)if\({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment between \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _3}\).

  1. The statement is True.
  2. The statement is False.
  3. The statement is True.
See the step by step solution

Step by Step Solution

Step 1: Determine whether the given statement is True or False

a)

The cubic Bezier curve is determined by four control points. The standard form is shown below:

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^3}{{\bf{p}}_0} + 3t{\left( {1 - t} \right)^2}{{\bf{p}}_1} + 3{t^2}\left( {1 - t} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\)

Thus, the given statement (a) is True.

Step 2: Determine whether the given statement is True or False

b)

Recall that the tangent vector at \({{\mathop{\rm p}\nolimits} _0}\), for instance, from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\), and it is twice as long as the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

Thus, the given statement (b) is False.

Step 3: Determine whether the given statement is True or False

c)

It is true that when two quadratic Bezier curve with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\)and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).

The Bezier curve has \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\) when joined at \({{\mathop{\rm p}\nolimits} _2}\), then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).

Thus, the given statement (c) is True.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.