Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q13E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

\({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\)

See the step by step solution

Step by Step Solution

Step 1: Find the values of \({d_{\bf{1}}}\) and \({d_{\bf{2}}}\)

Find \({d_1}\) for \({H_1}\).

\(\begin{array}{c}{d_1} = {{\bf{n}}_1} \cdot {{\bf{p}}_1}\\ = 1\left( 2 \right) + 2\left( { - 3} \right) + 4\left( 1 \right) + 2\left( 2 \right)\\ = 4\end{array}\)

Find \({d_2}\) for \({H_2}\).

\(\begin{array}{c}{d_2} = {{\bf{n}}_2} \cdot {{\bf{p}}_2}\\ = 2\left( 2 \right) + 3\left( 2 \right) + 1\left( { - 1} \right) + 5\left( 3 \right)\\ = 22\end{array}\)

Step 2: Write the augmented matrix

The system of equations is:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2\end{array}} \right){\bf{x}} = 4\)

\(\left( {\begin{array}{*{20}{c}}2&3&1&5\end{array}} \right){\bf{x}} = 22\)

The augmented matrix can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2&4\\2&3&1&5&{22}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&{ - 10}&4&{32}\\0&1&7&{ - 1}&{ - 14}\end{array}} \right)\)

Step 3: Write the general solution

The general solution is:

\(\begin{array}{c}x = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\\ = p + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}\end{array}\)

So,

\(p = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right)\), \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right)\) and \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\)

Therefore, \({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.