Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q14E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

  1. The control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) with \(t = 1\) is \(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\).
  2. It is proved that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).
  3. The control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) is \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right) = \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\).
  4. It is proved that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).
  5. It is proved that \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).
See the step by step solution

Step by Step Solution

Step 1: Explain each equal sign \(3\left( {{r_3} - {r_2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{p_3} - {p_2}} \right)\)

a)

Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\) and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curve with the control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\).

For the Bezier curve in (7) as shown below:

\(x'\left( t \right) = \left( { - 3 + 6t - 3{t^2}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3 - 12t + 9{t^2}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {6t - 9{t^2}} \right){{\mathop{\rm p}\nolimits} _2} + 3{t^2}{{\mathop{\rm p}\nolimits} _3}\)

In particular, for \(0 \le t \le 1\);

\(x'\left( 0 \right) = 3\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\,\,\,\,\,{\mathop{\rm and}\nolimits} \,\,\,\,\,\,x'\left( 1 \right) = 3\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,...{\rm{ }}(9)\)

From \(x'\left( t \right)\) compute \(x'\left( {.5} \right)\) as shown below:

\(x'\left( {.5} \right) = \frac{3}{4}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\)…(10)

Recall the chain rule for the derivatives as shown below

\(y'\left( t \right) = .5x'\left( {.5t} \right)y'\left( t \right)\,\,\,\,{\mathop{\rm and}\nolimits} \,\,\,z'\left( t \right) = .5x'\left( {.5 + .5t} \right)\,\,\,\,{\mathop{\rm for}\nolimits} 0 \le t \le 1\)…(11)

From (9) with \(z'\left( 1 \right)\) in place of \(x'\left( 1 \right)\), from (11) with \(t = 1\), and from (10), the control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) satisfy

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

Thus, the control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) with \(t = 1\) is \(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\).

Step 2: Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\)

b)

Use the part (a) as shown below:

\(\begin{aligned}{}3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) &= \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\\{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2} &= \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\\{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2} &= \frac{1}{2}{{\mathop{\rm p}\nolimits} _3} - \frac{1}{2}{{\mathop{\rm p}\nolimits} _2}\\{{\mathop{\rm r}\nolimits} _2} &= {{\mathop{\rm r}\nolimits} _3} - \frac{1}{2}{{\mathop{\rm p}\nolimits} _3} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2}\end{aligned}\)

Substitute \({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _3}\) in the obtained equation as shown below:

\(\begin{aligned}{}{{\mathop{\rm r}\nolimits} _2} &= {{\mathop{\rm p}\nolimits} _3} - \frac{1}{2}{{\mathop{\rm p}\nolimits} _3} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2}\\ &= \frac{1}{2}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _3}\\ &= \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\end{aligned}\)

Thus, it is proved that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

Step 3: Explain each equal sign \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\)

c)

From (9) with \(z'\left( 0 \right)\) in place of \(x'\left( 0 \right)\), from (11) with \(t = 0\), and from (9), the control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) satisfyingas shown below:

\(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right) = \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\)

Thus, the control points for \({\mathop{\rm z}\nolimits} \left( t \right)\) is \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right) = \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\).

Step 4: Show that \(8{{\mathop{\rm r}\nolimits} _1} =  - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\) 

d)

Use the part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\) as shown below:

\(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\)

Left-multiply the above equation by \(\frac{8}{3}\) as shown below:

\(\begin{aligned}{}\frac{8}{3} \times 3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) &= \frac{8}{3} \times \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\\8\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\\8{{\mathop{\rm r}\nolimits} _1} - 8{{\mathop{\rm r}\nolimits} _0} &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\\8{{\mathop{\rm r}\nolimits} _1} &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\end{aligned}\)

Thus, it is proved that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

Step 5: Show that \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\)

e)

The midpoint of the original curve \({\mathop{\rm x}\nolimits} \left( t \right)\) occurs at \({\mathop{\rm x}\nolimits} \left( {.5} \right)\) when \({\mathop{\rm x}\nolimits} \left( t \right)\) has the standard parameterization as shown below:

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm p}\nolimits} _2} + {t^3}{{\mathop{\rm p}\nolimits} _3}\)……(7)

The new control points \({{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0}\) are given as shown below:

\(\begin{aligned}{}{{\mathop{\rm r}\nolimits} _0} &= {{\mathop{\rm q}\nolimits} _3}\\ &= {\mathop{\rm x}\nolimits} \left( {.5} \right)\\{{\mathop{\rm r}\nolimits} _0} &= \frac{1}{8}\left( {{{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\end{aligned}\) ……(8)

\(8{{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\)

Use equation (8) to substitute for 8\({{\mathop{\rm r}\nolimits} _0}\) in part (d) as shown below:

\(\begin{aligned}{}8{{\mathop{\rm r}\nolimits} _1} &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\\ &= 2{{\mathop{\rm p}\nolimits} _1} + 4{{\mathop{\rm p}\nolimits} _2} + 2{{\mathop{\rm p}\nolimits} _3}\end{aligned}\)

Multiply the above equation by \(\frac{1}{8}\) as shown below:

\({{\mathop{\rm r}\nolimits} _1} = \frac{1}{4}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _3}\)

Substitute \(\frac{1}{2}{{\mathop{\rm p}\nolimits} _2} = \frac{1}{4}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _2}\) in the above equation as shown below:

\(\begin{aligned}{}{{\mathop{\rm r}\nolimits} _1} &= \frac{1}{4}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _3}\\ &= \frac{1}{2}\left( {\frac{1}{2}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)} \right)\end{aligned}\)

Use part (b) in the above equation as shown below:

\(\begin{aligned}{}{{\mathop{\rm r}\nolimits} _1} &= \frac{1}{2}\left( {\frac{1}{2}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm r}\nolimits} _2}} \right)\\ &= \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\end{aligned}\)

Thus, it is proved that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\) is \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Most popular questions for Math Textbooks

Let \({v_1} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\end{array}} \right]\), \({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{5}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{3}}\end{array}} \right]\), \({p_1} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{array}} \right]\), \({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\end{array}} \right]\), \({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\end{array}} \right]\), \({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{0}}\end{array}} \right]\), \({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\), \({p_{\bf{6}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\), \({p_{\bf{7}}} = \left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{4}}\end{array}} \right]\) and let \(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of \({p_1}\), \({p_{\bf{2}}}\), and \({p_{\bf{3}}}\) with respect to S.
  3. On graph paper, sketch the triangle \(T\) with vertices \({v_1}\), \({v_{\bf{2}}}\), and \({v_{\bf{3}}}\), extend the sides as in Figure 8, and plot the points \({p_{\bf{4}}}\), \({p_{\bf{5}}}\), \({p_{\bf{6}}}\), and \({p_{\bf{7}}}\). Without calculating the actual values, determine the signs of the barycentric coordinates of points \({p_{\bf{4}}}\), \({p_{\bf{5}}}\), \({p_{\bf{6}}}\), and \({p_{\bf{7}}}\).
Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.