Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q18E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use partitioned matrix multiplication to compute the following matrix product, which appears in the alternative formula (5) for a Bezier curve.

\(\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

The matrix product is \({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Matrix equation for Bezier curve

The matrix whose columns are the four control points is called a geometry matrix \(G\). The \(4 \times 4\) matrix of polynomial coefficients is the Bezier basis matrix \({M_B}\).

If \({\mathop{\rm u}\nolimits} \left( t \right)\) is the column vector of power of t, then the Bezier curve is given by \({\mathop{\rm x}\nolimits} \left( t \right) = G{M_B}{\mathop{\rm u}\nolimits} \left( t \right)\).

The parameter t is replaced by a parameter \(s\):

\({\mathop{\rm x}\nolimits} \left( s \right) = {\mathop{\rm u}\nolimits} {\left( s \right)^T}M_B^T\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)

Step 2: Use partitioned matrix multiplication to compute the matrix product

Recall the alternative formula for a Bezier curve as shown below:

\({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}{{{\left( {1 - s} \right)}^3}}&{3s{{\left( {1 - s} \right)}^2}}&{3{s^2}\left( {1 - s} \right)}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)…(5)

Consider the matrix as \({M_B} = \left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\).

Consider the matrix \({\mathop{\rm u}\nolimits} {\left( s \right)^T} = \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\).

\(\begin{aligned}{}{\mathop{\rm x}\nolimits} \left( s \right) &= {\mathop{\rm u}\nolimits} {\left( s \right)^T}M_B^T\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right){\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&s&{{s^2}}&{{s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}1&{ - 3}&3&{ - 3}\\0&3&{ - 6}&{ - 3}\\0&0&3&1\\0&0&0&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3 + 3s}&{3 - 6s + 3{s^2}}&{ - 1 + 3s - 3{s^2} + {s^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\end{aligned}\)

Thus, the matrix product is \({\mathop{\rm x}\nolimits} \left( s \right) = \left( {\begin{aligned}{{}}1&{ - 3\left( {1 - s} \right)}&{3{{\left( {1 - s} \right)}^2}}&{ - {{\left( {1 - s} \right)}^3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.